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ABSTRACT

Multi-atlas segmentation methods are among the most accurate approaches for the automatic labeling of magnetic reso-
nance (MR) brain images. The individual segmentations obtained through multi-atlas propagation can be combined using
an unweighted or locally weighted fusion strategy. Label overlaps can be further improved by refining the label sets based
on the image intensities using the Expectation-Maximisation (EM) algorithm. A drawback of these approaches is that
they do not consider knowledge about the statistical intensity characteristics of a certain anatomical structure, especially its
intensity variance. In this work we employ learned characteristics of the intensity distribution in various brain regions to im-
prove on multi-atlas segmentations. Based on the intensity profile within labels in a training set, we estimate a normalized
variance error for each structure. The boundaries of a segmented region are then adjusted until its intensity characteristics
are corrected for this variance error observed in the training sample. Specifically, we start with a high-probability “core”
segmentation of a structure, and maximise the similarity with the expected intensity variance by enlarging it. We applied
the method to 35 datasets of the OASIS database for which manual segmentations into 138 regions are available. We
assess the resulting segmentations by comparison with this gold-standard, using overlap metrics. Intensity-based statisti-
cal correction improved similarity indices (SI) compared with EM-refined multi-atlas propagation from 75.6% to 76.2%
on average. We apply our novel correction approach to segmentations obtained through either a locally weighted fusion
strategy or an EM-based method and show significantly increased similarity indices.

1. INTRODUCTION

Whole brain anatomical segmentation of magnetic resonance (MR) images is an important task with the potential to assist
clinical decision making in neuroimaging.'= The labeling of an individual brain region enables automatic measurement
of its volume, extents and shape. Manual delineation by trained experts is still considered the gold-standard for anatomical
segmentation. However, manual methods do not scale well to the size of cohorts used in recent multicentre imaging studies,
such as the Alzheimer’s Disease Neuroimaging Inititative (ADNI, adni.loni.ucla.edu)* or TBIcare, a project that focuses
on improving the diagnosis and treatment of traumatic brain injury (TBI) (www.tbicare.eu).

Widely used, fully automatic approaches to whole brain segmentation are based on propagating a set of manually or
semi-automatically generated atlases to the target image. The propagated atlas label sets are then merged into a consensus
segmentation using one of a choice of available fusion strategies.>® Published methods range from simple, unweighted ap-
proaches’™ to more sophisticated strategies that weight the individual contributions locally, based on intensity information
from the atlas and target images,° thereby achieving better accuracy. A popular representative of the multi-atlas segmenta-
tion category is MAPER,'? which uses an unweighted strategy. A particularly promising approach is to use image intensity
information to weight the contributing segmentations using the expectation-maximization (EM) algorithm.!!-1> Methods
based on graph-cuts'? are also based on image intensity information and are an alternative approach to EM refinement. In
addition, fusion strategies based on statistical optimization have been proposed. The most popular representatives of this
category are STAPLE!* and its modifications.

In this work, we employ intensity characteristics of various brain structures to improve labelings produced by two
different multi-class, whole brain segmentation methods, namely MAPER-based'? locally weighted fusion and EM refine-
ment.'> We calculate the intra-label intensity variance for each individual label of a segmentation produced by either of
these automatic segmentation methods. By also calculating the intra-label intensity variance based on the gold-standard
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delineations we are able to estimate a correction value by which this intra-label intensity variance should be corrected.
Based on this correction value we then modify single labels to better match the expected intra-label intensity variance.
Furthermore, we show that merging segmentation results obtained with different techniques can improve the result of re-
gional segmentations across the whole brain. Specifically we choose a different method depending on whether the region
in question is cortical or subcortical. We used this approach in the recent “MICCAI 2012 Grand Challenge and Workshop
on Multi-Atlas Labeling”. Our entry entitled “MALP-EM”!6 was evaluated as one of the top three performing methods in
this challenge.

To evaluate the proposed approach, we generated label sets for 20 datasets of the OASIS database!” and compared them
with manual gold-standard segmentations. A distinct set of manually segmented images from the same cohort was used as
training data. Using the proposed statistical correction step yields significantly improved similarity indices (SI) compared
to our reference method MAPER.!? The improvement is particularly distinct for cortical regions.

2. METHOD
2.1 Data

We used the data set provided as part of the “MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling”. It
consists of 35 Tj-weighted images with isotropic voxel size of 1 x 1 x 1 mm from the OASIS database.!” Corresponding
labels had been created manually by experts’ according to the protocol available at www.braincolor.org.'® We split the
data set, as done in the Grand Challenge, into training and testing subjects. The training data (n = 15) had been acquired
from 15 subjects (10 female, 5 male, mean age: 23£4.3), and testing data (n = 20) from 15 subjects, of which 5 subjects
were scanned twice (12 female, 8 male, mean age: 40423).

2.2 Multi-Atlas Label Propagation with EM refinement (MALP-EM)

We calculate a subject-specific probabilistic brain atlas for an unsegmented 77-weighted MR image y, that is to be automat-
ically labeled. The n voxels of y, are indexed by i = 1,....,n, so that the unseen image y,, is defined as yu = {y1,y2,.--,¥n}>
where y; € R denotes the intensity value of the i-th voxel. We obtain the probabilistic priors by registering M manually
generated atlases to the coordinate space of y, using an approach that relies on a non-rigid registration based on free-form
deformations (FFD).'® 1 Specifically we use an enhanced registration approach which incorporates tissue probability maps
into the registration process (MAPER).!?

After mapping the M label maps to the individual target space of y,, we create the probabilistic atlas using a locally
weighted multi-atlas fusion strategy® based on a Gaussian weighted sum of squared differences on rescaled, intensity-

normalized images. The transformed atlases are denoted by Ay, with m = 1,...,M. For K structures and M propagated
atlases the probabilistic atlas at voxel i for class k is calculated as:
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With the difference image Dy, for the image y, and atlas Ap, defined as Dy, = (yu — Am)z, we calculate w;, and Y} as:
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Here Gg is a zero centered Gaussian with parameter 6 and + denotes a convolution. We thus take the spatial distance of
voxels from the voxel of interest into account when comparing neighborhoods. For our experiments we set 6 = 2.5.

We then estimate the hidden segmentation of y,, denoted by Z = {z,2, . ..,2,}, where z; is a vector of size K and the
k™ component represents the probability that a voxel i belongs to a region k, by means of the observed intensities employing
the widely used EM optimization presented by van Leemput et al. (1999).%° In this EM optimization it is assumed that
the log-transformed intensities of voxels belonging to a certain label k are normally distributed with mean g and standard
deviation ok. The model parameters are thus ¢ = {(u;,01), (u2,62), ..., (Uk,0k)}. Smoothness of the final segmentation
is enforced through global and stationary Markov Random Fields (MRF).?!

In this application, the EM algorithm consists in interleaving the estimation of the class probabilities z;;, while assuming
that the model parameters ¢ are fixed, with the maximization of the overall probability of observing an image yy.

provided by Neuromorphometrics, Inc. (http://Neuromorphometrics.com/) under academic subscription.



Increasing o, with increasing label
extent into PV voxels

Synthetic cortical brain region
CSF
cGM/CSF boundary (PV)

cortical gray matter (cGM)

cGM/WM boundary (PV)
white matter (WM)

Figure 1. The intra-label intensity variance 6% is a good indicator for the number of partial volume voxels included at the boundary of a
certain label k. This figure illustrates qualitatively the increase of the intra-class variance within a cortical label with increasing extent
of the labeled region. We calculate the intra-class variance (‘S% by normalising each class to intensity mean y; = 1 and estimate the
according Gaussian distribution G(1,6%). We assume that the intensities within a certain label k are normally distributed.

2.3 Estimation of statistical correction rates

Statistical information based on the intensity distribution within a certain label is an important characteristic. We incorpo-
rate this statistical information into the segmentation process to enhance label overlaps. In particular, the standard deviation
oy of intensities within a certain label & is a good indicator of the size of the label. For example, in cortical grey matter
structures the label-specific standard deviation (or intra-class variance) will increase if voxels, often partial volume voxels,
at the grey matter/white matter or grey matter/cerebrospinal fluid (CSF) boundary are added to the label. This assumption
is illustrated in Figure 1. Ideally, automatically obtained labels should therefore have the same intra-class variance as the
labels of the gold-standard.

Based on the available gold-standard segmentations and corresponding automatically computed segmentations, we
calculate the normalized intra-class variance for each region k and each atlas Ay,, denoted by (Ggold k)2 in the gold-standard

and (o7 k)2 for the automatic method for region k . We normalize the standard deviation of each region k and atlas A

—_ m
by the intensity mean ;" of this label as: 6} = ;—’;. We then estimate a value A by which G,y should be corrected in
k
order to better match Ggo1q 4. In particular we minimize:

M
A =miny ¥ (Coiax — (Cmiok +A))? (3)

m=1

2.4 Refinement based on statistical correction rates

With these class-specific learned statistical correction rates A, we correct the intra-class standard deviation Gy« Of an
automatically obtained segmentation for a subject for which no gold-standard segmentation is available. We implement
this in a refinement step, where we correct the intra-class statistics of each class by subsequently adding candidate voxels
to the label. Voxels i are candidates for addition to a label k if they fulfil the requirements:

1) Their label probability z;; is greater than o, with oo = 0.1 set heuristically.
2) They are labeled as CSF (background) or cerebral white matter.

Condition 1) ensures that only voxels with a minimum baseline probability are added to the label. Condition 2) ensures
that labels are extended into the adjacent white matter or CSF, but not into neighboring cortical labels. We then sort all
candidate voxels in descending order by their likelihood z; of being labeled as class k. From this sorted pool of voxels we
successively add voxels to the label & until the intra-class standard deviation Gy« increases by Ag.



3. EXPERIMENTAL RESULTS

For evaluation, we used the 35 71-weighted MR scans with corresponding manually annotated label sets provided through
the “MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling”. We used a fixed subset of 15 scans and
corresponding label sets as atlases (M = 15) and for the estimation of the correction rates 6. These 15 atlases were used
to segment the remaining 20 images forming the testing set.

In total we compared six different approaches:

» MAPER: Standard MAPER as published by Heckemann et al. (2010);'°

MALP: Segmentations obtained according to Equation 1;

MALP SC: MALP with the proposed statistical correction (SC);

MALP-EM: MALP segmentations with EM-based refinement;
* MALP-EM SC: MALP-EM with the proposed SC;
* Merged: obtained by merging subcortical MALP SC with cortical MALP-EM SC labels.

In a first step we segmented the 15 training subjects using MALP (compare Equation 1) and MALP-EM in order to
learn the statistical correction rates A;. We determined all correction rates by comparing the intra-class variance based on
segmentations obtained by locally weighted fusion (MALP) or EM-refinement (MALP-EM) to the statistics based on the
gold-standard label sets as presented in Section 2.3. We then used these learned correction rates to correct both results
obtained using MALP and MALP-EM on the testing set.

We segmented each of the images into the 138 regions provided. We calculated Dice overlaps (similarity indices, SI)
with the available gold-standard segmentations on 134 regions, excluding, as in the Grand Challenge, the regions “vessel”
and “cerebral exterior” on both right and left. SI values for the different segmentation methods are shown in Table 1 and
visually in Figure 2. The improvements in cortical SI obtained through statistical correction are significant (Student’s two-
sided paired t-test, p < 0.001) for both the MALP and MALP-EM evaluations. We observed that the proposed statistical
correction is significantly beneficial for cortical structures, while it did not lead to significant improvements in subcortical
structures. The boxplot in Figure 3 illustrates the “success rate” (fraction of relabeled voxels for which the label change
constituted an improvement) of the statistical correction step. For cortical voxels, the mean success rate was 64%. For
subcortical structures, it was 54%, confirming the observations made when comparing similarity indices.

In order to take advantage of the strengths of the respective approaches — locally weighted fusion for subcortical regions
and EM-based refinement for cortical regions — we also provide results for a merged label set “Merged”, which we obtained
by combining the subcortical MALP SC with the cortical MALP-EM SC labels after statistical correction. The main reason
for an improved average SI in subcortical regions, comparing “Merged” to MALP SC, is due to an improved cerebral white
matter segmentation. The cerebral white matter MALP SC labels benefit from the combination with more accurate cortical
MALP-EM SC labels. The effect of statistical correction and an exemplary segmentation result is illustrated in Figure 3.

We also compared our results “Merged” to the best performing method in the Grand Challenge called “PICSL_BC”
with an average SI of 76.5%. “PICSL_BC” employs a learning-based wrapper method presented in Wang et al. (2011)%?
where segmentation bias with respect to the gold-standard segmentations is learned. The comparison with this result is
reasonable since the same images were used for training and testing and overlaps are calculated based on the same 134
regions. No significant difference could be found for the average similarity index over all 134 regions.

4. DISCUSSION

To our knowledge this is the first method using learned intra-label intensity variance errors as intensity-based statistical
characteristic to improve multi-atlas whole brain segmentations. We used a similar approach incorporating statistical
characteristics, also called MALP-EM, in the segmentation challenge “MICCAI 2012 Grand Challenge and Workshop on
Multi-Atlas Labeling”.

Our results indicate that incorporating learned statistical characteristics in the segmentation approach has the potential
to improve label overlaps. In this work we have shown that the consideration of the intra-label intensity variance is
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Figure 2. Boxplot of all compared methods applied to the 20 testing subjects. Average similarity indices (SI) of 36 subcortical structures
(left), 98 cortical structures (middle) and all 134 regions (right).
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Figure 3. Label maps (greyscale) of MALP-EM (top, left) and MALP-EM with corrected statistics (top, middle) with overlaid gold-
standard segmentation. Corresponding 7}-weighted MR image with voxels labeled correct (blue) and false (red) through statistical
correction (top, right). Exemplary improved regions indicated through red arrows. An exemplary coronal slice segmented by a trained
expert (bottom, left) and with our proposed method “Merged” (bottom, middle). The success rate for the 20 testing subjects with which
a certain voxel is relabeled during the statistical correction is illustrated in the box plot (bottom, right).



MAPER | MALP +SC | MALP-EM + SC | Merged
SI 134 classes 74.9 75.5 75.6 75.6 76.2 76.5
SI 36 subcort. classes 82.0 82.5 82.5 81.5 81.6 82.6
SI 98 cort. classes 72.4 72.9 73.0 73.4 74.2 74.2

Table 1. Similarity indices (SI) averaged over 20 subjects for all 134 classes, all 36 subcortical classes and all 98 cortical classes obtained
with MAPER using majority vote, MALP using a locally weighted fusion strategy and optional statistical correction SC, MALP-EM
refining MALP with the EM algorithm and optional statistical correction SC. “Merged” denotes a label set obtained by merging the
cortical labels from MALP-EM SC and the subcortical labels from MALP SC. bold = significantly better than best method in columns
to the left (Student’s two-sided paired t-test, p < 0.001).

significantly beneficial for cortical regions. However, it did not significantly influence segmentation accuracy of subcortical
structures. There are two potential reasons for this: First, the proposed statistical correction is a rather coarse procedure.
If the baseline segmentation already has an accuracy of 80% SI or higher, it does not seem to yield a strong benefit. For
such structures, which are prevalent in the subcortical set, more sophisticated correction models may need to be learned.
Second, the manual segmentation protocol for subcortical labels defines some boundaries on geometrical criteria, rather
than intensity gradients. Our statistical correction procedure does not incorporate this type of criterion and may thus
falsely expand a given subcortical label. For cortical labels, on the other hand, the statistical correction step accounts for
differences in the partial volume characteristics of segmentation methods, leading to significant benefits.

In future work, we plan to investigate more complex models to further improve segmentation accuracy for cortical as
well as subcortical structures.

5. CONCLUSION

We presented a novel, computationally efficient technique to refine cortical labels of multi-class whole brain segmentations
based on learned statistical characteristics. By comparison with EM-refined label maps, we showed that the correction of
intensity characteristics is an effective approach to enhance the quality of a given segmentation significantly. Using a re-
cently published atlas set, we confirmed that locally weighted fusion strategies outperform simple majority vote fusion, and
that results obtained through multi-atlas fusion can be improved in the cortex using refinement based on EM optimization.
We furthermore confirmed that segmentation accuracy can be increased in a straightforward way by combining segmenta-
tion results obtained with different labeling techniques. Our method is comparable to the leading methods presented at a
recent segmentation challenge.
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