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Abstract

Insufficient training data and severe class imbalance are often the main limiting
factors when developing machine learning models for the classification of rare
diseases. In this work, we address this problem by augmenting the training set
with synthesized images. We pose the generative task as an unsupervised image-
patch translation problem with the aim to generate bone lesions on images without
pathology. In experimental results, we show that this can enable the training of
superior classifiers achieving better performance on a held-out test set in the binary
classification task of bone lesion detection. Additionally, we demonstrate the
feasibility of transfer learning and apply a generative model that was trained on
one bone to another.

1 Introduction

Deep neural networks have demonstrated their potential to reach human-level performance for image
classification, however, their performance generally correlates with the amount of available training
samples. When focusing on rare medical conditions, the limited availability of pathological training
images can cause severe class imbalance and limits the accuracy of machine learning models. One
example of a pathology that is both of high interest but also rare is bone lesion [1]]. The binary
classification of the presence of bone lesion in X-ray images is the subject of our work.

Several methods have been proposed to address the class-imbalance problem, including image
transformations [2] and sampling strategies [3]], such as under- or over-sampling. Often those
approaches are of limited benefit as they do not address the inherent problem of dealing with a small
training set not fully representing the underlying data distribution. Recent works have proposed
the use of generative adversarial networks (GANs) [4]] to generate synthetic data from scratch in
order to augment and increase diversity in the training set [3} |6]. However, learning to generate
high-resolution images from random noise requires an often prohibitively large training data set too.

In this work, we aim to synthesize bone lesions by translating spatially-constrained patches extracted
from non-pathological X-rays rather than translating whole images or generating from scratch. The
model is trained on patches extracted from full images to ensure localized generation of pathology
(c.f. Figure[I). A blending approach is described that merges the translated patches back into full
images. A standard classifier is subsequently trained for bone lesion detection for the following bones
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Figure 1: Bone lesion with expert-annotated red bounding box. Random sized patches, cropped
around lesions, used for training the generative model is marked by the white bounding box.

(body parts): humerus, tibia and femur. We observed performance gains for individual body parts
by using an augmented training set. We further show that transfer learning is achieved by using an
image-translation model trained on one body part to generate bone lesions on other similar-looking
body parts, for which training data is too noisy or insufficient in size to train a model with good
performance.

Related Work GANSs are being used in the medical domain to accomplish tasks like image translation
[7, 18,19, [10]], image segmentation [11} 12} [13]] and data augmentation in controlled settings [14, [15].
Multiple works have addressed lesion classification [16} 17, [18]], but to our knowledge, there has been
no substantial work focused on developing machine learning models for bone lesion classification
from X-ray images.

2 Methodology

Generative Model The generation of bone lesion pathology is posed as an unsupervised image-
to-image translation task [19], where Px; and Py, are the two distributions from which X-ray
image patches showing bone anatomy with lesion x;, and bone anatomy without lesion x;, are drawn
respectively. The model then maps these unpaired samples to a shared latent space Z, using encoders
for respective distributions: Ej(z;) = Ex(xp) = z € Z. The generators then decode back the input
sample from this latent vector: G;(z) = x;, Gp(2) = xp. The model is trained to optimize the
following objectives: i) ELBO [20]]: in order to learn an approximate posterior, ii) adversarial [4]: to
ensure the generated images resemble samples from the target distribution, and iii) cycle-consistency
[21]]: to ensure the cross-domain translators are inverses of each other.

The weighted losses are optimized jointly. We closely follow the hyperparameter settings from [19].
Lesion-like properties are generated with the following translation operation: xy,—,; = Gi(En(xp)).

Patch-making Bone lesions tend to cause local alterations in bone anatomy without substantially
affecting the remaining, global visual appearance of the image. We therefore aim to translate localized
image patches rather than training a translation model for the complete images. Patches allow the
training of a generative model that is both computationally more efficient to optimize and that also
leads to higher quality generated samples.

Blending The translated patches do not only consist of generated bone-lesion-like pathology, but also
exhibit subtle changes in the overall image characteristics, such as contrast and brightness. We employ
alpha-blending to smoothly blend the translated patch in the original image as: axp—y; + (1 — a)xp.
Specifically, we define a locally varying blending factor « as: @ = cos([i|™ * §) cos(|j|™ * § ), where
7 and j are interpolations in the interval [-1, 1] and n is a hyper-parameter.

Binary Classifier We used a standard dilated residual net (DRN) [22]] for the binary classification
task. In contrast to the image translation model the binary classifier was trained on full, uncropped
images. See Figure [2]for an example of a synthesized training image.

3 Results

Dataset A set of X-ray images (c.f. Table|l) showing bone anatomy with and without lesion are
sourced from various U.S. hospitals and assessed by expert, board-certified radiologists (c.f. FigureT).
Images acquired from pediatric patients or showing confounding image features (e.g., congenital,



Table 1: Data Splits for each model. Left: classification. Right: generation; the classes are kept
balanced for training. The source samples are only non-lesion and used for creating the augmented
sets. In both tables, the ratio denotes lesion:non-lesion class split.

Classification Model Generative Model
Body part Train Validation Test Body part Train Source
Humerus 268:2295 41:305 50:500 Humerus 536:536 4643
Tibia 214:14482 22:1628 50:500 Tibia 515:515 4680
Femur 32:4558 14:573  50:500 Femur 285:285 9171

Table 2: Test-set evaluation of bone lesion detection models.

Body part Type Threshold ¢ Augm. Samples ROC AUC (CI195%)
Humerus Baseline 0 0 0.876 (0.817-0.926)
Humerus Augmented 0.9 401 0.924 (0.889-0.955)
Tibia Baseline 0 0 0.618 (0.532-0.705)
Tibia Augmented 0.9 124 0.640 (0.547-0.732)
Tibia TL 0.9 1264 0.698 (0.610-0.785)
Femur Baseline 0 0 0.533 (0.441-0.627)
Femur TL 0.95 1342 0.682 (0.594-0.764)

fixation hardware) are removed from the data set for the classification task. We do not exclude those
images when training the generative model as it is trained on cropped image patches. A test data set
was held out ensuring sufficient positive samples and used at no point to train or fine-tune any model.

Augmented Classification We trained a baseline model for each body part on the given training set
to predict the probability of the X-ray showing a bone lesion. To augment the training set with few
samples but those that likely resemble characteristic bone lesion pathology, the baseline classifier is
used to filter the generated images that achieve a score greater than a certain threshold (¢), which is
chosen on the validation set. In both the models, regularization is performed through augmentation
procedures consisting of linear transformations, along with L2 weight decay. Table 2] summarizes
the results for training on the baseline and augmented training set measured as Area Under the
ROC-Curve (AUC) with bootstrapped confidence intervals (CI).

Transfer Learning In comparison to the available humerus X-rays, the available tibia and femur
data sets were highly heterogeneous in terms of radiographic view and often showed confounding
image content such as presence of external objects. This made it particularly challenging to train a
valuable generative model for tibia and practically impossible for femur. We explored the potential of
straightforward transfer learning and applied the generative model trained on humerus to generate
lesions on both tibia and femur images. The humerus lesion classifier was used to filter the generated
samples. On both tibia and femur test sets we observed substantially increased AUC scores indicating
that transfer learning can be a powerful approach to enrich low-data training sets.

Figure 2: Stages of patch translation for full image (left) and selected patch with surrounding context
(right): 1) original, ii) translated and iii) blended. The white dotted box highlights the translated patch.



4 Conclusion

We trained a generative model that can represent some properties of the target pathology (bone lesions
in X-ray) and synthesize those into sample patches drawn from another distribution (normal anatomy).
When employing generative models for augmenting medical imaging data sets, great care needs to
be taken to avoid and control for possibly introduced bias. Future work should be concerned with
the exploration of those limitations and explore the method’s potential on both a more diverse set of
disease pathology and other imaging modalities.
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