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Abstract. We employ a modification of our previously published method
based on multi-atlas label propagation (MALP) and intensity-based re-
finement through expectation-maximization (EM) to segment magnetic
resonance (MR) brain scans of the OASIS database. We had gold-standard
segmentations available for 15 subjects of the same database, which we
used as atlases in a multi-atlas propagation setup. After propagating the
available atlases using transformations obtained with the robust MAPER
approach, we use a locally weighted fusion strategy to merge the 15 at-
las label sets into a consensus probabilistic segmentation of the unseen
image. We use these probabilistic labels as priors in a subsequent EM
refinement step, where we improve the segmentations based on the in-
tensity distribution of the images. On top of the common EM refinement
we apply a statistical correction based on the intensity characteristics of
each individual region. The intensity profile of certain regions and their
individual neighborhoods are not suited for an intensity based EM re-
finement nor a statistical correction. Therefore, we only refine regions for
which intensity based refinement is beneficial and obtain a final segmen-
tation by merging the labels obtained through MALP, MALP-EM and
the statistical corrected MALP-EM regions. For evaluation, we segment
MR brain scans of 20 subjects of the OASIS database.

1 Introduction

The segmentation of brain images into anatomical regions in magnetic resonance
(MR) scans is an important task in neuroimaging. It yields regional volumetric
information and labeling of different brain structures which can support clinical
decision making. Even though manual annotations by a trained specialist are
accurate, they are not scalable, time consuming and thus expensive. A fully
automated method that calculates brain segmentations without user interaction
is thus highly desirable and the basis for the segmentation of large data sets,

? This work is partially funded under the 7th Framework Programme by the European
Commision (http://cordis.europa.eu/ist/).



such as the data from the Alzheimer’s Disease Neuroimaging Inititative (ADNI,
adni.loni.ucla.edu) [1] or OASIS [2].

In this work we employ a recent segmentation method [3] which combines
the advantages of both intensity based methods, e.g. [4], and approaches based
on multi-atlas label propagation (MALP), e.g. [5], to segment MR brain images
of 20 healthy adult subjects of the OASIS database [2]. Our approach refines
subject specific spatial priors obtained through MALP and label fusion [6] in a
probabilistic intensity model solved via expectation-maximization (EM) [7]. We
furthermore refine certain regions based on statistical intensity characteristics.

2 Method

2.1 Material

We used the dataset provided through the “MICCAI 2012 Grand Challenge
and Workshop on Multi-Atlas Labeling”. The training dataset consists of 15 T1-
weighted images with corresponding labels created by experts1. We segmented
a testing dataset consisting of 20 otherwise identical T1-weighted images with
hidden labels into 138 regions. The performance of our approach was evaluated
using an automatic online evaluation interface provided through the Challenge.

2.2 Multi-Atlas Label Propagation with EM refinement
(MALP-EM)

We use multi-atlas label propagation to derive a subject-specific probabilistic
brain atlas for an unseen T1 weighted MR scan I that is to be segmented. We in-
corporate these probabilistic labels into our EM framework as spatial anatomical
priors. We index the n voxels of I by i = 1, . . . , n, so that for intensities yi ∈ R an
image can be defined as I = {y1, y2, . . . , yn}. The probabilistic priors are created
by transforming M manually generated atlases to the coordinate space of the un-
seen image. We calculate the M transformations for the label propagation with
a non-rigid registration method based on free-form deformations (FFD) [8, 9],
which follows a preceding rigid and affine alignment. In particular we employed
MAPER [10], which incorporates tissue probability maps into the registration.
The probabilistic atlas is then created with a locally weighted multi-atlas fusion
strategy [6], by employing a Gaussian weighted sum of squared differences on
rescaled, intensity-normalized images. We followed the approach of van Leemput
et al. [7] and estimated the hidden segmentation by means of the observed in-
tensities y. Assuming that the observed log-transformed intensities of voxels be-
longing to a certain class k are normally distributed with mean µk and standard
deviation σk, yields the model parameters Φ = {(µ1, σ1), (µ2, σ2), . . . , (µK , σK)}.
We applied regularization of the resulting segmentation using the approach of
global and stationary Markov Random Fields (MRF) described in [11].

1 provided by Neuromorphometrics, Inc. (http://Neuromorphometrics.com/) under
academic subscription.



2.3 Statistical correction of MALP-EM

During our experiments we observed that the EM algorithm tends to produce
segmentations with a too low intensity variance within a region (intra-class vari-
ance) compared to the gold-standard segmentations. We therefore calculated
an expected normalized intra-class variance for each region (σ2

Gold,k) by aver-
aging the normalized standard deviations σk

µk of each class over the training

subjects. We furthermore calculated the averaged (average over all training sub-
jects segmented with a leave-one-out strategy) normalized standard deviation
within each region produced by the EM algorithm (σEM,k) . By calculating
∆k = (σGold,k −σEM,k)2 we estimated by which value the intra-class variance of
a certain class should be increased in average to better match the gold-standard
characteristics. In a subsequent refinement step we then corrected the intra-class
statistics of each class by adding voxels with posterior probability greater than
10%, in decreasing order regarding the label probability, to the region unless the
intra-class variance increased by ∆k. Overlaps of most cortical regions with the
gold-standard could be improved using statistical correction.

2.4 Fusion of MALP and MALP-EM

Our experiments revealed that some regions are ill-suited for intensity based
refinement, due to either their intensity properties, or to those of their neighbor-
hood. For example, no improvements using EM were obtained for the structures
thalamus and putamen which can be explained with the wide overlap of their
intensity profile with the profile of white matter. This is also shown in [3]. For
these structures it is preferable to rely on the segmentation obtained through
MALP alone. By segmenting all available training datasets with a leave-one-out
strategy, we determined the subset of regions for which the standard EM refine-
ment or the statistically corrected version is beneficial. We then created a final
segmentation by combining the refined labels for this subset with the labels from
the MALP approach for the remaining regions. In case of overlapping regions,
we labeled a voxel according to the EM-refined label.

2.5 Parameters

To identify neighbouring tissue classes for the implementation of the MRF, we
counted the labels of adjacent voxels in the gold-standard segmentations. After
thresholding we obtained a 139 × 139 adjacency matrix G that describes the
MRF, with entry (i, i) eqauls 0 and entry (i, j) defined as 1.0 if structures i and
j share a boundary and 1.5 if structures i and j are distant. For a voxel size of
1x1x1mm we set for the locally weighted fusion the parameter σ to 2.5. Param-
eters were optimized using a leave-one-out strategy on the training datasets.

3 Results

The presented approach was evaluated using 20 datasets of the OASIS database
with hidden labels. The results were automatically calculated through the Grand



Challenge on Multi-Atlas Labeling. We observe that the MALP approach per-
forms very well on most of the 36 subcortical regions (average Dice similarity
coefficient greater than 85%). Since the cohort consists of healthy adults with lit-
tle intersubject variability, it is not surprising that registration based approaches
perform well on this dataset. The EM- and statistical-based refinement is thus
particularly relevant in cortical regions where, due to the high structural vari-
ability within the brain, registration based approaches are less accurate. Also the
high intensity contrast at the cortical boundary between white and grey matter
tissue is predestined for intensity based EM refinement. We obtain an average
Dice coefficient of 73.28% for cortical and 82.52% for subcortical regions on the
testing dataset. This yields an overall average label overlap of 75.76%.
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