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Abstract. To address the challenge of applying expert anatomical
knowledge captured in brain atlases to unseen brain images, we previ-
ously proposed “MAPER” (multi-atlas propagation with enhanced reg-
istration).
The approach is based on a pairwise image registration procedure that
incorporates tissue class information to obtain a robust anatomical cor-
respondence estimate, even when the target brain is distinctly differently
configured from the atlases. Multiple segmentations obtained by propa-
gating individual atlas label sets are combined using a simple procedure
(vote-rule decision fusion).
We participate in the “MICCAI 2012 Grand Challenge and Workshop
on Multi-Atlas Labeling” with a procedure that remains unchanged in
principle from our previous publications. Only at the detail level was the
method adapted to the particularities of the challenge.

1 Introduction

The advent of large, publicly available repositories of images of the human brain
(ADNI, AIBL, Predict-HD, IXI, OASIS etc.) has changed the playing field for
image analysis. Whereas smaller-scale projects could rely on visual review of
images by a trained expert, this traditional approach does not scale well to
the requirements of data analysis in large multi-centre studies. To extract the
information required to answer a defined research question, automatic anatomi-
cal segmentation methods are among the most promising and widely applicable
avenues.

An established approach for achieving automatic segmentation is to exploit
expert knowledge contained in manual segmentations pertaining to magnetic
resonance (MR) images. A variety of algorithms have been proposed. Multi-
atlas label propagation, followed by a consolidation (fusion) step has repeatedly
been shown to be accurate and robust.
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We apply here a label propagation method where expert labels are warped
into the target space using a geometric transformation determined through pair-
wise nonrigid image registration. To increase the robustness of the image regis-
tration step against large discrepancies that can arise from, e.g., atrophy, initial
global and coarse transformations are calculated from pairs of tissue probabil-
ity maps, rather than native T1 signal maps. Multiple segmentations resulting
from processing multiple atlases with a single target set are consolidated in the
space of the target using vote-rule decision fusion [1]. We previously described
performance characteristics of the underlying multi-atlas method [2] and the
tissue-probability based enhancement (“MAPER”) [3]. MAPER-generated seg-
mentations of the baseline and screening images acquired by ADNI are publicly
available [4].

2 Method

2.1 Material

We downloaded the data for the “MICCAI 2012 Grand Challenge and Workshop
on Multi-Atlas Labeling”, consisting of 35 images in total, originating from the
OASIS project (http://oasis-brains.org). T1-weighted images of 15 subjects had
been labelled as training data and supplied with corresponding label sets, which
had been generated by manual delineation of 138 regions1. Testing data consisted
of 20 T1-weighted images of 16 subjects. Label sets for the testing data were
hidden from the contestants.

2.2 Image registration

Probabilistic classification of intracranial voxels into tissue classes (grey matter,
white matter, and cerebrospinal fluid) was performed on the atlas and target im-
ages. The partial volume estimates from the tissue classification were combined
into a multispectral image volume, with each channel of the image representing
a partial volume estimate for one of the three tissue classes. The atlas and target
images were then aligned using affine and coarse nonrigid (20 mm control point
spacing, CPS) registration. As a departure from our previous implementations,
we did not use the summed cross-correlation as the similarity measure to max-
imize. Instead, we minimized Kulback-Leibler divergence across all channels of
the multi-spectral image volume.

The resulting transformation was then used as a starting point for a more
detailed registration (10, 5, and 2.5 mm CPS), where normalized mutual infor-
mation (NMI) between the signal intensities of a T1 image pair is maximized.
Displacements were applied to the atlas image via a lattice of control points and
blended using B-spline basis functions [5]. At each resolution level, the output
transformation of the previous stage was used as the starting point.

1 Label sets were provided by Neuromorphometrics, Inc.
(http://neuromorphometrics.com/) under academic subscription.
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2.3 Label fusion

Each pairing of an atlas with a target set yields a label set that uniquely assigns
an anatomical label to each target voxel. To consolidate these multiple label
sets, the per-voxel modal value of all label assignments was chosen as the final
unique assignment (vote-rule decision fusion [1]). In the case of multiple modes,
the final label was chosen at random from the tied label values.

2.4 Parameter modifications

To generate tissue probability maps, we subsampled the input images to a reso-
lution of 2 × 2 × 2 mm before applying FSL FAST. This led to an acceleration
of the global and coarse registration steps without loss of accuracy.

2.5 Software toolkits

Tissue probability maps were obtained using FAST from the FSL suite [6] and
combined using “fslmerge”.

The tools used for affine (“reg aladin”) and nonrigid (“reg f3d”) registration
were obtained from the Nifty Reg toolkit, an efficient implementation of B-spline
warping [7].

Vote rule decision fusion was applied using “combineLabels” from IRTK
(www.doc.ic.ac.uk/∼dr/software/).

3 Discussion

Its characteristics predestine the MAPER method for certain application sce-
narios. For example, using normalized mutual information as a similarity metric
in the high-dimensional registration steps entails robustness against acquisition
differences. MAPER is thus particularly suitable if atlas and target (training
and testing) images have been acquired differently, ie. on different scanners, at
different centres, or using different sequences. Using tissue probability maps for
coarsely aligning atlas and target images relaxes the usually strict requirement
that the atlas set be anatomically representative of the target set. Consequently,
MAPER performs better than other approaches when target images with se-
vere atrophy are to be segmented with atlases of young, healthy subjects [3].
Neither of these strengths is relevant in the Grand Challenge. Nevertheless, we
participate with this method for two reasons. First, the enhancements have been
developed with the stated objective of avoiding sacrifices of accuracy in “easy”
application scenarios, so we expect its performance on the Grand Challenge data
to be reasonable. Second, MAPER output can serve further development, both
as a foundation and as a lower-bounds benchmark: for testing sophisticated seg-
mentation combination strategies, it delivers individual segmentations, plus the
result from vote-rule fusion to indicate the level of accuracy that any newly de-
veloped method should be able to beat. A separate entry to the Grand Challenge,
provided by co-author CL, will use MAPER in this way.
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