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Abstract. To address the challenge of applying expert anatomical
knowledge captured in brain atlases to unseen brain images, we pro-
pose “DISPATCH”. DISPATCH is segmentation by propagating atlases
with coerced harmony; a multi-level, multi-resolution label propagation
approach that exploits per-level groupwise agreement.
The method relies on pairwise label propagation at a given resolution
level. The resulting segmentations are combined using selective vote-rule
decision fusion. The consolidated label set serves as a common target for
a label-based registration using label consistency as the similarity metric.
The resulting transformations are used as the starting point for iterating
the registration-fusion-registration sequence at the next resolution level.
We participate in the “MICCAI 2012 Grand Challenge and Workshop
on Multi-Atlas Labeling” with this novel approach.

1 Introduction

Magnetic resonance (MR) scanning of the human brain with state-of-the-art
equipment generates large quantities of data. These are typically represented
as 3D grey scale images that map the spatial signal distribution. For many
applications, visual section-by-section review of these images is still the preferred
method of processing such data. It does not, however, scale to large numbers of
images. To extract information from large sets of images or multi-centre image
repositories, such as ADNI, AIBL, IXI, OASIS, etc., efficient automatic methods
are required.

Automatic anatomical segmentation provides an important avenue towards
dimensionality reduction, feature extraction, and identification of imaging
biomarkers. To segment a brain image of a given study subject or patient anatom-
ically, most approaches rely on atlases generated by experts through manual
segmentation of equivalent images. The optimal strategy for transferring this
expert knowledge from the atlases to the new image is a matter of scientific
debate. However, label propagation with decision fusion has consistently been
among the best performing methods.
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The approach presented here, “DISPATCH” (DISPATCH is segmentation by
propagating atlases with coerced harmony) is a multilevel labelling procedure
relying on forcing agreement of all atlases at each refinement step. It was devel-
oped from a brain extraction method called “pincram” (pyramidal intracranial
masking). On the Segmentation Validation Engine (http://sve.loni.ucla.edu/),
pincram is currently ranked second after the gold-standard labels for the site’s
test set (accessed 5 July 2012).

2 Method

2.1 Material

Data provided in the course of the “MICCAI 2012 Grand Challenge and Work-
shop on Multi-Atlas Labeling” were used. A total of 35 images was supplied,
originating from the OASIS project (http://www.oasis-brains.org/). Training
data consisted of 15 T1-weighted images, with spatially corresponding, expertly
generated maps identifying 138 labels, 113 of which had been declared relevant
for the challenge1. Testing data consisted of 20 T1-weighted images, with labels
that remained hidden from the participants.

2.2 Iterative labelling procedure

For a given target, labels were generated at progressive levels of refinement,
termed affine, coarse, medium and fine, according to the detail level of the image
registration step. At each level, the following calculations were carried out:

1. Label sets were generated from all 15 atlases using a standard label propa-
gation approach based on image registration (cf. Section 2.3).

2. The 15 label sets were consolidated in target space using vote-rule decision
fusion, generating fused set F1.

3. The 15 individual label sets were ranked in descending order of label agree-
ment (Jaccard index) with F1.

4. These ranked values were used to determine an acceptability threshold θ =
L1 − 2(L1 − L7). L7 was a coarse approximation of the median.

5. Individual segmentations passing the threshold were consolidated, generat-
ing fused set F2 and a mask M indicating non-unanimously labelled target
voxels. Both F2 and M are in target space.

6. M was applied to the target image, creating an image with original grey scale
values in voxels that were non-unanimously labelled and zero beyond. This
ensured that only regions where labels had not been unanimously assigned
were considered for the similarity calculation during the subsequent iteration.

7. The 15 atlas label sets (in their original space) were registered to F2, maxi-
mizing label consistency (cf. Section 2.3). The resulting 15 transformations
from each individual atlas space to the target space were retained.

1 Label sets were provided by Neuromorphometrics, Inc.
(http://neuromorphometrics.com/) under academic subscription.
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The masked target image and the retained transformations were used as
starting points to iterate the procedure at the next level of refinement.

2.3 Image registration

Each pair of images (T1 or label sets) was affine-registered (first iteration) or
nonrigidly registered (subsequent iterations). Nonrigid registration consisted in
applying displacements to the atlas image via a lattice of control points, blended
using B-spline basis functions, maximizing a similarity metric (see below) [1].
The stopping condition for the optimization was either no further improvement
in similarity or the reaching of a maximum number of iterations.

The similarity metric for registering pairs of T1-weighted images was normal-
ized mutual information [2]. To ensure the effectiveness of the data reduction step
(6.), only values greater than zero were considered in the calculation.

The similarity metric for registering pairs of label sets was label consistency.
It is defined as the fraction of voxels with agreed classifications, i.e. if nij repre-
sents the number of voxels given label i by one image and label j by the other,
then label consistency is measured as∑

i nii∑
i,j nij

. (1)

All registration steps were carried out using the Image Registration Toolkit
(IRTK, www.doc.ic.ac.uk/∼dr/software/).

3 Discussion

The DISPATCH procedure combines proven techniques in a novel fashion. Pre-
vious multi-atlas label propagation methods produced multiple segmentations
from individual atlases independently and only combined them in the final step
of the procedure (e.g. MAPER, [3]). DISPATCH generates instead a consensus
labeling at each of several levels of refinement, using information from the T1-
weighted images. Starting estimates for the subsequent level are then created
by registering all atlas label sets to the consensus set. These starting estimates
constrain and inform the subsequent level of T1-pair registrations by driving
them towards the consensus. In addition, efficiency is achieved through data
reduction: at subsequent refinement levels, only those parts of the target im-
age are considered which are likely to contain label boundaries. Such a data
reduction step has previously been described for BEaST, an accurate brain ex-
traction method that similarly constrains the algorithm’s boundary search to
regions which, based on information taken from preceding iterations, are likely
to contain that boundary [4].

DISPATCH performs best on full head images. Brain extraction, a prerequi-
site step for many other approaches, is unnecessary.

Another related approach that has previously been described is “SIM-
PLE” [5]. It also relies on estimating the performance of an individual atlas by
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estimating agreement of its propagated label set with a fused label set. SIMPLE
discards atlases that fail to pass an agreement threshold, whereas DISPATCH
rescues such atlases by registering their labels to the consensus set. The perfor-
mance estimation in SIMPLE is carried out after a detailed registration has been
performed, whereas in DISPATCH, a performance estimation step is inserted at
each detail level, integrating the fusion step into each successive refinement pro-
cedure.

The evaluation results indicate that the DISPATCH approach works in prin-
ciple. While the accuracy is somewhat inferior to, for example, MAPER, we are
nevertheless encouraged by the findings. Since the development of DISPATCH
is still in its infancy, no sophisticated refinement has been attempted yet. We ex-
pect that incorporating tissue class information, employing more elaborate label
fusion techniques, and choosing more appropriate atlas selection strategies will
yield substantial improvements. Also, due to the large number of registrations
involved in DISPATCH, the parameter space is large, and further improvements
are likely to emerge from parameter optimizations.
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