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Übersicht

Die Vereinigung von medizinischen Bildern, die durch verschiedene Modalitäten oder zu un-
terschiedlichen Zeitpunkten akquiriert wurden, ist eine weit verbreitete Anwendung in der in-
terventionellen und diagnostischen medizinischen Bildverarbeitung. Der Vorgang diese Bilder
in einem gemeinsamen Koordinatensystem anzugleichen wird als Registrierung bezeichnet und
ist eine anspruchsvolle Aufgabe. Insbesondere die rechenintensive Rückgewinnung von nicht-
rigiden Weichteil-Deformationen ist von besonderem Interesse. Gesteigerte Datenmengen sowie
Echtzeitanforderungen, wie sie in interventionellen Applikationen auftreten, erfordern hochper-
formante Registrierungsmethoden.

In der vorliegenden Arbeit präsentieren wir eine Möglichkeit diesen Anforderungen gerecht
zu werden. Unser Ansatz basiert auf der Umsetzung eines gradientenbasierten nicht-rigiden
Registrierungsalgorithmus auf der parallelen Programmierarchitektur NVIDIA CUDA. Im Rah-
men der Variationsrechnung präsentieren wir ein Registrierungsverfahren, das auf dem Fluss
von Diffeomorphismen basiert, in Verbindung mit verschiedenen Abstandsmaßen. Wir zeigen
wie dominierende Bausteine dieses Registrierungsvorgangs, Gauß-Filter und Histogramm-Be-
rechnung, effizient auf der GPU realisiert werden können.

Experimentelle Ergebnisse bestätigen eine signifikante Reduktion der Rechenzeiten um bis
zu eine Größenordnung verglichen mit existierenden parallelen CPU Implementierungen.
Schließlich schlagen wir, mit ersten vielversprechenden Ergebnissen von komplexeren Interpo-
lationsschemata und Regularisierungstechniken als auch von einem neuartigen Abstandsmaß,
Ausgangspunkte für zukünftige Forschungsarbeiten vor.

Die Registrierungszeiten, die mit einer effizienten parallelen Implementierung auf NVIDIA
CUDA fähigen Grafikkarten erzielt werden können, öffnen die Tür für die Anwendung nicht-
rigider Registrierung in zeitkritischen interventionellen Applikationen.
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Abstract

The fusion of medical images obtained by different modalities or at different acquisition times
is a common task in interventional and diagnostic medical image processing. The process of
aligning these images in a common coordinate system is called registration and a challenging
task. Especially the computationally expensive recovery of nonrigid soft tissue deformations is
of particular interest. Increased data as well as real-time constraints as they arise in interventional
applications call for high performance registration techniques.

In this thesis we present an attempt to cope with these challenges by employing a gradi-
ent based nonrigid registration algorithm implemented on the parallel programming architecture
NVIDIA CUDA. We present a registration approach that is based on flows of diffeomorphisms
in combination with different similarity measures in a variational framework. We show how
dominating building blocks of this registration pipeline, Gaussian filtering and histogram com-
putation, can be efficiently realized on the GPU.

Experimental results reveal significant decreases in computation times of up to one order
compared to an existing parallel CPU implementation. Finally we provide with promising pre-
liminary results of more complex interpolation schemes and regularization techniques as well as
of a new similarity measure starting points for future research.

The registration times obtained by an efficient implementation on NVIDIA CUDA capable
devices open the door to the application of nonrigid registration methods in a time-critical inter-
ventional setting.
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Chapter 1

Introduction

The alignment of two images collected at different times or acquired by different modalities is
a fundamental task in a variety of applications in interventional and diagnostic imaging. Often
it is the combination of the information contained in different datasets that allows for a reliable
diagnosis or an efficient treatment. For example, fusion methods are used to combine functional
positron emission tomography (PET) data with morphological computed tomography (CT) im-
ages in oncology and cancer staging.

In general, registration is the process of aligning two or more images in a common coordinate
system and a challenging task. Dependent on the application the given time to register two given
images is short. Very challenging real-time constraints may arise in interventional imaging to
provide the surgeon with additional information acquired preoperatively [MO08]. When brain
diseases are treated by neurosurgical resection, fast nonrigid registration might be the key to
employ intraoperative image guidance [Rui10].

The nonrigid registration process is especially due to its high dimensional parameter space
given by the many degrees of freedom a very time consuming, computationally expensive task.
However, these costly registration techniques are necessary when results obtained with an ef-
ficient rigid registration approach are not satisfying. For example, rigid techniques might not
be sufficient to recover brain deformations of up to 20 mm caused by the so-called brain shift
phenomenon [Soz02], [Rui10]. As mentioned in [MO08], an accelerated nonrigid registration
could also allow for the application of adaptive radiation therapy (ART) [Jos04], where radia-
tion therapy is improved by adapting the treatment plan on daily changes of the patients anatomy.

It is obvious to employ graphics hardware to address the challenge of a fast nonrigid regis-
tration efficiently in parallel.

1



2 CHAPTER 1. INTRODUCTION

Nevertheless, former approaches based on shader programming were often not satisfying.
Computations that were not suitable for shader programming, as for example histogram compu-
tation, were often performed on the CPU. This required expensive data transfers between host
and device memory, which ate up the performance gained through parallelism.

With NVIDIA CUDA [NVI10c] a new general purpose parallel computing architecture was
introduced in 2006. Its shared memory capability enables efficient solutions on the GPU for
more complex problems.

Up to now, only a small number of studies have been conducted on the realization of de-
formable registration techniques on GPUs [MO08]. In [Rui09] NVIDIA CUDA is used to tackle
rigid registration problems arising in minimally invasive neuroangiography interventions. Vari-
ous demons deformable image registration algorithms were implemented using CUDA and eval-
uated on ART relevant registration tasks in [Gu10]. Other recent approaches to recover nonrigid
deformations modeled by B-Splines can be found in [Ans09] and [Rui10].

In this work we will investigate how a complete nonrigid registration pipeline that is based
on the flows of diffeomorphisms [Che02] can be accelerated by using NVIDIA CUDA.

We will first provide a rough introduction to the problem of nonrigid registration and the
programming architecture of NVIDIA CUDA. In Chapter 2 we will give a short overview over
existing nonrigid registration approaches. We will present a certain gradient based matching al-
gorithm together with different similarity criterions within a variational framework in Chapter
3. We present theoretical background and conduct research on recursive filtering and joint his-
togram computation on GPUs in Chapter 4. Both tasks turn out to be particularly relevant for the
performance of the presented registration pipeline. After providing a detailed evaluation of the
performance gain obtained by our implementations in Chapter 5, we give perspectives on how to
extend this work in different directions in Chapter 6. We conclude in Chapter 7.

1.1 The Nonrigid Registration Problem

Image registration can be described as the process of estimating a geometric transformation that
aligns a moving image to a fixed reference image. This task can be formulated as an optimization
problem with respect to a given cost function which measures the quality of the alignment. The
selection of the transformation model and the cost function is application dependent and has a
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Figure 1.1: Schematic registration of a sad face (moving) to a happy face (reference). Rigid and
affine registration (rotation, shear) is followed by nonrigid registration.

strong impact on the registration results as well as the computation time. Historically image
registration is viewed as being rigid, meaning that images can simply be rotated and translated
with respect to one another to obtain a good matching, or nonrigid [Cru04]. In the latter case
a deformation or stretching of local structures is possible to recover misalignments caused by
biological differences or non-uniform image acquisitions. Rigid transformations can be extended
to arbitrary affine transformations by allowing scaling and shearing in addition to rotations and
translations. An idea of what kind of transformations can be recovered with either rigid or
nonrigid registration methods is given with Figure 1.1. In this artificial example the sad face
(moving image) is rotated by a rigid and sheared by an affine transformation to recover the
orientation and the circular shape of the face in a first step. The final match with the happy
face (reference image) is obtained by a nonrigid transformation, which is recovering the bending
of the mouth. Rigid approaches are often suitable and sufficient for the registration of images
containing rigid structures as bones, where the preservation of distances and angles might be a
desired property. However, most of the human body and especially soft-tissue movement does
not conform to rigid transformations [Haw05]. The registration of moving organs, which can
be found in heart or lung scans, call for more complex nonrigid transformations. Also the most
challenging registration tasks, which arise during interventional imaging in surgery [Fer02] or
modeling changes in neuroanatomy, crucially depend on nonrigid registration.

In this work we focus on nonrigid transformations, which allow for arbitrary deformations of
the moving image. A further overview and introduction to nonrigid registration methods is given
in Chapter 2.
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1.2 GPU Programming using NVIDIA CUDA

The programmable graphics processing unit (GPU) is a highly parallel, multithreaded, many-
core processor, which is specialized for compute intensive computations [NVI10c]. GPUs are
especially well-suited for problems that can be solved in parallel, by executing the same pro-
gram on different data elements. By trading caching and flow control for data processing, GPUs
are better suited for compute intensive tasks than CPUs are. Whenever the same program can
be executed independently on each data element, there is no major need for flow control. Also
the increased memory access latency because of missing data caches can be hidden with high
arithmetic intensity. By mapping all data elements to parallel processing threads, a huge variety
of applications that require to process large data sets can take advantages of this data-parallel
programming model.

With the introduction of CUDA, NVIDIA presented a general purpose parallel computing ar-
chitecture, with a new parallel programming model as well as instruction set architecture. CUDA
enables the efficient solution of many complex problems by employing NVIDIA GPUs.

With the availability of C for CUDA there exists a set of language extensions to the high-level
programming language C that makes the development of CUDA programs very accessible.

In [NVI10c] NVIDIA describes three key abstractions that are available to the programmer
as a set of language extensions. The hierarchy of thread groups, shared memories and barrier
synchronization.

These abstractions enable the programmer to partition the problem in coarse-grained sub-
problems which can be solved independently by blocks of threads. These sub-problems can now
be solved by a number of threads within each block. The availability of 16 kB shared memory,
which is shared among the threads within a certain block, plays a major role. Also the availability
of synchronization routines within each block allows for more flexibility. The challenge to de-
velop software that reasonably scales with an increasing number of processor cores is addressed
by organizing a group of threads in so-called blocks. These blocks can be executed completely
independent. Merely the runtime system needs to know the physical processor count to schedule
the blocks according to the available cores. This concept is illustrated in Figure 1.2.

The language extensions provided with C for CUDA allow the definition of so-called ker-
nels, that are similar to regular C functions but executed in parallel by different CUDA threads.
Through the built-in threadIdx and threadDim variables every thread is labeled with a certain
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Figure 1.2: Multithreaded programs are partitioned into blocks of threads. These blocks are
executed independently of each other. Thus the execution time scales theoretically with the
number of available cores on the GPU. [NVI10c]

thread ID within each thread block and provided with the number of threads per dimension. This
allows to distinguish between threads and therefore define the data elements, that will be pro-
cessed by one certain thread. The fact that these variables are three component vectors makes
programmer’s life easy, since it allows for a natural way to invoke computation across different
data elements. Caused by hardware limitations, current GPUs allow for up to 512 threads per
block. Nevertheless, by executing the kernel with several thread blocks, the number of total
threads can greatly exceed this number. The blocks themselves are organized into a up to two-
dimensional grid of thread blocks, which is shown in Figure 1.3. In practice the block (number
of threads) as well as the grid (number of thread blocks) configuration is usually derived from
the size of the processed data.

The number of total blocks and the index of the block a certain thread belongs to is provided
by the built-in variables blockIdx and blockDim. The fact that thread blocks need to be executed
independently allows to schedule them in any order and to write code that scales with the number
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Figure 1.3: Schematical layout of a grid containing different thread blocks and a certain block
containing a number of threads. [NVI10c]

of available cores. Threads within one block can be synchronized to coordinate memory accesses
and interact by sharing up to 16 kB shared memory. It is emphasized that especially the avail-
ability of shared memory and synchronization routines are the novelties, which allow for general
purpose programming on GPUs.

Threads themselves can access memory in different ways. While up to several GB of rather
slow global memory is available to all threads, shared memory, shared among threads belonging
to the same block, is fast but with 16 kB per block limited. Next to this every thread has its
own but also quite slow local memory. In terms of performance global or local memory accesses
should be replaced by fast shared memory whenever possible. The different memory spaces are
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Figure 1.4: Different memory spaces on a CUDA device. [NVI10b]

illustrated in Figure 1.4, where comparatively slow spaces are located on the DRAM while fast
registers and shared memory are located on-chip.

With texture and constant memory there are two additional read-only memory spaces avail-
able, which are accessed by all threads and located on the DRAM. However, since the texture
memory space is cached and allows for hard-wired linear interpolation it is often preferred to
global memory.

CUDA programs run on two different physical devices. On the one hand sequential computa-
tions are performed on the CPU (host system). On the other hand computationally expensive and
data intensive calculations can be done efficiently in parallel on the GPU (device system). With
the host and device memory, both systems have separate memory spaces which are managed by
the program. This means that a program is required to (de-)allocate device memory as well as
perform data transfers between host and device memory. This concept is shown schematically in
Figure 1.5.

For a more detailed introduction as well as technical details we refer to the NVIDIA CUDA
Programming Guide [NVI10c] and the NVIDIA CUDA C Programming, Best Practices Guide
[NVI10b].
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Chapter 2

Overview of Existing Nonrigid Registration
Methods

As already mentioned in Section 1.1 a main classification of registration methods can be done by
distinguishing between rigid or affine and nonrigid transformations.
In our work, we are interested in nonrigid registration and will thus provide primarily an overview
of commonly used nonrigid registration approaches in this Chapter. However, we mention that
nonrigid registration is usually performed on rigidly preregistered images [Hil01].

According to [Cru04] the nonrigid registration process can be divided into three blocks:

1. the similarity measures which are criterions for the quality of the alignment and can be
classified in intensity and geometric approaches;

2. the transformation model which specifies feasible changes to the moving image in order
to match the reference image;

3. the optimization process that finds a valid transformation that optimizes the matching cri-
terion (similarity measure).

A schematical overview of the whole registration pipeline and its components is shown in
Figure 2.1. Determined by a certain energy and transformation model, the optimization algo-
rithm usually iteratively updates the transformation. In every step this updated transformation is
then applied to the moving image. For this warped (transformed) moving image and the refer-
ence image a similarity criterion is evaluated and another iteration can be performed. This basic
scheme is repeated until a defined condition, as for example an iteration count, is met.

9



10 CHAPTER 2. OVERVIEW OF EXISTING NONRIGID REGISTRATION METHODS

��������	
�� ��
���	��
��	���	
��

�����
�������
����������
���
��	������� �
�
������ �	���
�
������

�������
��	�

��
���	��
��	�

�	����� �
��

���������� �
��

��

�����
���	��
��	�!
����	�������
��

"�	�������#
��
  ���������#
��


Figure 2.1: Schematic overview of a nonrigid registration pipeline and its components.

Research in the field of nonrigid registration is conducted for more than two decades. The
fact that there is no universal choice of similarity measure, transformation model and optimizer
that provides satisfying results for any application lead to a huge variety of approaches. Which
strategy is best is dramatically dependent on the application and needs to be considered for every
individual case. The demand of presenting a complete and technically detailed overview of all
different concepts would be condemned to fail within the scope of this document. Therefore
we restrict this section to be a rough snapshot of commonly used approaches, while providing
references to literature containing further and technically more extensive descriptions.

In the following we will focus on different similarity measures, transformation models and
optimization methods.

2.1 Geometry- and Intensity-based Methods

As already mentioned the registration process consists of finding a geometric mapping which
transforms the moving image to be most similar to the reference image. This similarity is mea-
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sured by cost functions. A proper design of these similarity measures is crucial for an efficient
and accurate registration. For example the shape (e.g. smoothness, existence of local extrema) of
the cost function is substantial for an efficient optimization. Dependent on the application there
were proposed a variety of measurements to determine the similarity of two images.

We can distinguish two main concepts, which are usually called landmark- or geometry-based
and intensity-based methods [Cru04], [Mod04].

Geometry-based

Geometry-based approaches are based on identifiable anatomical elements or fiducial markers
[Mod04] in each image. Usually functionally important surfaces, curves or point landmarks are
of interest. Once these features are selected, either automatically or by an expert [Mod04], the
goal of the registration process is to find a transformation so that their counterparts in the ref-
erence image are optimally matched [Cru04]. The use of landmarks, based on structural infor-
mation, ensures the anatomical relevance of the found transformation. An overview of surface
registration techniques applied to anatomical surfaces can be found in [Aud00]. Even though
there are approaches to identify the landmarks automatically this process is in general not auto-
mated [Mod04]. In fact the reproducible and consistent location of landmarks might be even for
experts a challenging task.

Intensity-based

Intensity-based approaches do not depend on previously located geometric structures. Instead
of matching features, intensity patterns are matched by employing mathematical or statistical
criteria [Cru04]. However, no anatomical knowledge is taken into account.

The simplest representative of this class of measurements is the sum of squared differences
(SSD). It is applicable if the registered images are except Gaussian noise identical [Cru04]. To
avoid the quadratic influence of outliers the sum of absolute differences (SAD) was proposed.
Next to SSD and SAD the correlation coefficient or also called cross correlation (CC) is suitable
for mono-modal image registration. This more complex similarity measure allows for a linear
relationship of corresponding intensities.
For multi-modal registration tasks the correlation ratio (CR) [Roc98] and mutual information
(MI) [Mae97],[Vio97] was proposed. While CR weakens the linear relationship assumed with
CC to a functional relationship, MI is a concept borrowed from information theory which is
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based on a probabilistic relationship of corresponding voxel intensities. A normalized version of
MI, called normalized mutual information (NMI), was introduced in [Stu99]. It tends to be more
robust to variations of the overlap region between images.

Our registration method should be automatic and merely depend on information acquired by
the images themselves. Therefore we will solely employ intensity-based similarity measures. A
more detailed and formal introduction of SSD, MI and CC can be found in Section 3.2.

2.2 Transformation Models

We follow a common differentiation, also used in [Mod04], by discriminating between paramet-
ric and nonparametric transformation models.

Parametric Registration

Rigid as well as affine transformations can obviously be described for the whole image by pa-
rameters. For a 3D image any rigid transformation is described by 6 parameters (3 translations +
3 rotations). Taking also shearing and scaling into account, an affine transformation is described
by 12 parameters (6 rigid + 3 scalings + 3 shears) respectively.
Next to this also nonrigid transformations can be described in a parametric way by representing
the transformation with a set of basis functions and the corresponding coefficients. The registra-
tion problem is then tackled by optimizing these coefficients. Commonly used basis functions
are the so-called “thin-plate” splines (TPS) [Boo89] and B-splines introduced by Rueckert et
al. [Rue99], [Rue06]. If TPS are used, the transformation depends globally on every control
point that belongs to the spline. This has the significant disadvantage that the computational
cost for changing a single control point increases with the number of control points [Cru04]. In
order to cope with likely and frequent occurring landmark extraction errors, approximating TPS
were proposed in [Roh01]. Compared to TPS, B-splines have local support which means that
the transformation is only affected in the neighborhood of a perturbed point. Especially because
of the resulting computational efficiency and the general applicability B-spline based registra-
tion methods got popular [Cru04]. Transformations based on B-splines can be modeled by an
equidistant grid of control points which are the spline coefficients. A reduced control point spac-
ing (increased number of control points) allows for a better description of local deformations
[Rue99]. Applications of B-spline registration are for example atlas construction [Bha04] or the
registration of breast images [Rue99].
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Nonparametric Registration

Compared to the transformation models introduced so far, nonparametric models are not based on
a certain set of basis functions, landmarks or control points. This allows for more freedom while
modeling local soft tissue deformations. Instead of restricting the transformation by a certain
number of parameters, nonparametric transformations are described by so-called deformation or
displacement fields. These fields record vectors that describe the displacement for each voxel in
the moving image to obtain a certain alignment with the corresponding location in the reference
image [Hil01]. However, the freedom given by this transformation model comes with two major
problems that need to be addressed. First of all, with this kind of transformation it is from scratch
not guaranteed that no additional cracks or foldings of the tissue are introduced [Mod04]. Thus
it is no longer sufficient to rate a found transformation by the obtained visual registration result.
In fact the deformation itself needs to be validated to ensure a physically meaningful transfor-
mation [Hah09]. Furthermore the minimization of some suitable similarity measure is because
of missing uniqueness and convexity an ill-posed problem [Mod04]. Especially the fact that the
solution of a registration problem does not continuously depend on the image data makes numer-
ical computation difficult [Cla06].

There are two main approaches to tackle these challenges. The first and more common
method is to add a regularization term to the cost function or also called energy functional,
which is described by the similarity measure. With this additional penalty function (“smoother”)
both previously stated problems (meaningfulness of the transformation, ill-posedness) can be
addressed. It also allows to distinguish between more or less likely transformations [Mod04].
As described in [Cla06] there are different ways to incorporate this smoother. Next to the com-
mon way of adding a with some parameter α ∈ R+ weighted smoother to the cost function,
which corresponds to the Tikhonov regularization, there were iterative relaxation methods that
are adapting α proposed in [Hen02]. Commonly used functionals employed for this regulariza-
tion are Dirichlet, elastic, fluidal, curvature or higher-order functionals [Cla06], [Hah09]. While
linear elastic models are restricted to small and local deformations, fluidal models allow for
larger deformations while having an increased likelihood of misregistrations [Mod04], [Cru04].
Curvature based regularization does not penalize affine transformations. This makes rigid prereg-
istration redundant and curvature based regularization particularly interesting for medical image
registration [Fis03], [Hah09].

In [Mod04] and also [Cla06] a variety of smoothers are summarized and introduced in more
detail.
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Another possibility to incorporate regularization is based on gradient flow approaches
[Her01a], [Cla06]. With this method the additive regularization is substituted by a spatial smooth-
ing of the gradient fields which occur in a gradient descent optimization [Her01a]. This approach
is related to the so-called demon’s algorithm [Thi98]. We refer to [Her01a], [Cru04] and [Cla06]
for further remarks on flow algorithms and alternative regularizers.

2.3 Optimization Process

The goal within the optimization process is to find a feasible transformation that maximizes the
image similarity. Picking the right optimizer is a delicate challenge. It requires next to a profound
knowledge of numerical analysis a good understanding of the registration problem [Cla06]. An
often encountered problem of many optimizers is the “local minima” problem. This means that
even if a transformation which results in a good similarity of the images is found, it is not en-
sured that it is really the best. As already mentioned also the physical meaningfulness of a found
deformation might be relevant. These factors need to be ensured by regularization and the design
of the optimizer. The solution of registration problems based on nonparametric models often
breaks down to the numerical solution of partial differential equations (PDEs). Dependent on
the resulting cost function, given computation time and required registration accuracy the most
appropriate optimizer can be picked. A good overview of numerical methods to solve different
nonrigid registration problems can be found in [Mod04] and [Cla06]. General considerations
for the optimization of cost functions, that arise when nonparametric models are employed, are
provided in [Cru04].

For a more detailed overview of registration methods we refer to [Hil01], [Zit03], [Cru04],
[Mod04], [Cla06] and [Hah09].

In the following we will present a certain nonparametric nonrigid registration approach.



Chapter 3

A Matching Algorithm

In this chapter we introduce a variational framework and provide variational gradients for three
different intensity based similarity criterions to employ a gradient based optimization method.
As optimizer for our nonparametric nonrigid registration method we present a flow algorithm
called flows of diffeomorphisms [Che02]. We chose this algorithm because it turns out that the
arising computation tasks, especially the regularization, can be efficiently parallelized. Also the
availability of an optimized parallel CPU implementation allows for a representative evaluation
and classification of the results achieved by using NVIDIA CUDA.

3.1 Notation

We introduce some notations and assumptions which are used throughout this chapter. The
notation is a combination, we felt most comfortable with, of the notation used in [Her01b],
[Her02] and [Che02].
In general, we consider image matching problems for images with scalar intensities on a bounded
domain Ω ⊂ Rn. Even if n is for the following developments arbitrary, we are mainly concerned
about 3D matching problems where accordingly n will be equal to 3.

The challenge is to find a deformation ϕ : Ω 7→ Ω which aligns a moving or template image
g : Ω 7→ R to a reference or also called target image f : Ω 7→ R. In the following we restrict
ϕ to diffeomorphisms1 that belong to a Hilbert space V . In this space the usual scalar product is
defined as ⟨ϕ, h⟩V =

∫
Ω
ϕ(x) · h(x) dx for h ∈ V .

Diffeomorphisms represent smooth and invertible transformations, which ensure that every
point in the reference image has a corresponding point in the moving image [Rue06]. We assume

1A bijective map ϕ is a diffeomorphism if ϕ and ϕ−1 are continuously differentiable [Che02].

15
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that ϕ is a diffeomorphism since we expect similar structures in reference and moving image.
The deformation ϕ acts on the moving image g by g ◦ ϕ. Next to ϕ, we will often consider the
displacement u : Ω 7→ Ω, which is related to ϕ via the decomposition ϕ = id+ u. Therefore we
have pointwise g(ϕ(x)) = g(x+ u(x)) = gu(x).

By defining a cost functional J : V 7→ R, which can be calculated for each similarity
criterion, we can compare the alignment of f and gu. In order to optimize the quality of this
transformation, we are looking for a minimal solution û to the problem:

û = argmin
u∈V

J [u] (3.1)

In this sense J measures the dissimilarity of the images, which is minimized. It turns out that
the gradient ∇uJ of J with respect to u has the generic form:

∇uJ (x) = Lu(f(x), g(x+ u(x)), x)∇g(x+ u(x)) (3.2)

For a given displacement u, the function L : R×R×Ω 7→ R is called local intensity comparison
function if L(i1, i2, u, x) depends on x and global intensity comparison function otherwise.

At this point we recall the first variation, defined as the Gateaux derivative, of J :

δhJ [u] = lim
ϵ→0

J [u+ ϵh]− J [u]
ϵ

=
∂J [u+ ϵh]

∂ϵ

∣∣∣∣
ϵ=0

(3.3)

If J has a local extremum for some u ∈ V , its first variation must vanish at u for all h ∈ V .

∀h ∈ V, δhJ [u] = 0 (3.4)

Since the gradient ∇uJ of the functional J is defined as δhJ [u] = ⟨∇uJ , h⟩V , the necessary
condition of optimality described in Eq. 3.4 is equivalent to

∇uJ = 0 (3.5)

and often called Euler-Lagrange equation.

In order to employ a similarity criterion for a gradient based matching algorithm, we need to
calculate the intensity comparison function, which is related to the gradient by Eq. 3.2. In the
following we will compute the variational gradients of three different similarity measures and
provide the according intensity comparison functions together with the Euler-Lagrange equa-
tions.
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3.2 Similarity Measures

In this section we will introduce different intensity-based similarity measures. With the Sum of
Squared Difference (SSD), a quite simple but efficient similarity measure for mono-modal image
registration is presented. However, when images can no longer be compared by the difference
of their intensity values, we need to employ more complex similarity criterions. This is usually
necessary whenever images are acquired by different modalities or corrupted by a non-uniform
bias as it is often the case with magnetic resonance images. For this purpose we also present with
Mutual Information (MI) and Cross Correlation (CC) two statistical similarity measures. These
criterions are based on a density estimation of the probability density functions (pdfs) pf , pgu and
the joint probability density function (jpdf) pf,gu of the two images f and gu. We will now present
a common approach to obtain a continuous estimation of these density functions.

Density Estimation

We associate the intensity values of the reference image f and the moving image g displaced by
u with the two random variables Xf and Xg

u and the corresponding pdfs pf and pgu. To be able to
evaluate similarity measures based on these statistical parameters, we employ a nonparametric
Parzen estimator to obtain a continuous estimation of the pdfs and jpdf [Her02, Par62]. More
precisely, we picked an estimator based on a normalized Gaussian kernel with standard deviation
γ ∈ R+. For a given displacement field u the jpdf of f and gu is estimated as

pf,gu (i1, i2) =
1

|Ω|

∫
Ω

Gγ(f(x)− i1, g(x+ u(x))− i2)dx (3.6)

where the marginals pf and pgu can be immediately expressed in terms of pf,gu by

pf (i1) =

∫
R
pf,gu (i1, i2)di2 (3.7)

and
pgu(i2) =

∫
R
pf,gu (i1, i2)di1 . (3.8)

We calculate the first variation of the estimator pf,gu with respect to u to

δhp
f,g
u (i1, i2) =

1

|Ω|

∫
Ω

∂2Gγ(f(x)− i1, g(x+ u(x))− i2)

∇g(x+ u(x)) · h(x) dx
(3.9)
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where ∂2 is the differential operator with respect to the second argument of Gγ .

We can also make this estimator local and allow for non-stationarities in the relation between
intensities [Her02]. By employing another normalized Gaussian of standard deviation β we
restrict this estimator to a neighborhood of each point x0 ∈ Ω. Our local estimator for a given
point x0 is then given as

pf,gu (i1, i2, x0) =
1

Gβ(x0)

∫
Ω

Gγ(f(x)− i1, g(x+ u(x))− i2)Gβ(x− x0) dx (3.10)

where
Gβ(x0) =

∫
Ω

Gβ(x− x0) dx (3.11)

with first variation

δhp
f,g
u (i1, i2, x0) =

1

Gβ(x0)

∫
Ω

∂2Gγ(f(x)− i1, g(x+ u(x))− i2)Gβ(x− x0)

∇g(x+ u(x)) · h(x) dx .

(3.12)

For more details on the presented density estimation we refer to [Her02] and [Par62].

3.2.1 Sum of Squared Differences

For the registration of two datasets acquired by the same modality SSD which is defined as

JSSD[u] =
1

|Ω|

∫
Ω

(f(x)− g(x+ u(x)))2 dx (3.13)

is often the similarity measure of choice.

First Variation

The variational gradient of JSSD[u] is easily computed by

∂JSSD[u+ ϵh]

∂ϵ
=

1

|Ω|

∫
Ω

∂

∂ϵ

[
(f(x)− g(x+ u(x)))2

]
dx

=
1

|Ω|

∫
Ω

2(f(x)− g(x+ u(x) + ϵh(x)))

∇g(x+ u(x) + ϵh(x)) · h(x) dx .

(3.14)
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With ϵ = 0 we calculate the first variation of JSSD to

δhJSSD[u] =
2

|Ω|

∫
Ω

(f(x)− g(x+ u(x)))∇g(x+ u(x)) · h(x) dx . (3.15)

By defining a global intensity comparison function LSSD
u : R2 7→ R as

LSSD
u (i1, i2) =

2

|Ω|
(i1 − i2) (3.16)

we obtain the Euler-Lagrange Equation for SSD in the form

∇uJSSD = 0 with ∇uJSSD(x) = LSSD
u (f(x), g(x+ u(x)), u)∇g(x+ u(x)) . (3.17)

3.2.2 Mutual Information

For multimodal image registration tasks, cost functions based on statistical similarity measures
such as mutual information (MI) [Mae97] have been proposed. This metric is derived from
information theory, and typically computed from joint histograms of image intensity pairs.

The choice of a suitable similarity measure to optimize is a critical part in image registration.
Since many metrics suffer from data-dependence, robustness or parameter dependence, MI which
overcomes these issues was proposed in [Mae97]. Concerning the data, no a priori knowledge is
required when using MI. MI is typically defined as:

MI(Xg
u, X

f ) = H(Xg
u) +H(Xf )−H(Xg

u, X
f ) (3.18)

with marginal entropy: H(X) = −
∫
R pX(x) log pX(x) dx and

joint entropy : H(X, Y ) = −
∫
R2 pXY (x, y) log pXY (x, y) dx dy

This metric captures the statistical dependence between the intensity values of an image pair and
is maximal in the case of geometrically aligned images [Mae97].

MI may also be written as the Kullback-Leibler divergence [Kul51, Mae97]

MIf,gu = KL(pf,gu , pfpgu) =

∫
R2

pf,gu (i1, i2) log
pf,gu (i1, i2)

pf (i1)p
g
u(i2)︸ ︷︷ ︸

EMI(i1,i2,u)

di1 di2 (3.19)

of the product pfpgu of the marginal distributions from the joint distribution pf,gu . This formulation
describes the expected value of the function EMI(i1, i2, u) [Her02].
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To evaluate Eq. 3.18 an estimation of the marginal probability distributions pf and pgu and the
joint probability distribution pf,gu is necessary. In practice this will be done by computing a joint
histogram of the intensity pairs of the reference and warped moving image. For our analytical
calculations we will employ the Parzen estimators presented in Eq. 3.6, Eq. 3.7 and Eq. 3.8.

First Variation

In order to solve a minimization problem, we consider the cost functional JMI[u] = −MIf,gu .

In the following we will present an explicit calculation of the first variation of this functional
JMI[u], which was introduced in [Her01a] and [Her02].

We calculate

∂JMI[u+ ϵh]

∂ϵ
=−

∫
R2

∂

∂ϵ

[
pf,gu+ϵh(i1, i2) log

pf,gu+ϵh(i1, i2)

pf (i1)p
g
u+ϵh(i2)

]
di1 di2

=−
∫
R2

∂pf,gu+ϵh(i1, i2)

∂ϵ
log

pf,gu+ϵh(i1, i2)

pf (i1)p
g
u+ϵh(i2)

+ pf,gu+ϵh(i1, i2)
pf (i1)p

g
u+ϵh(i2)

pf,gu+ϵh(i1, i2)(
∂pf,gu+ϵh(i1, i2)

∂ϵ

pf (i1)p
g
u+ϵh(i2)

pf (i1)2p
g
u+ϵh(i2)

2
−

∂pgu+ϵh(i2)

∂ϵ

pf,gu+ϵh(i1, i2)p
f (i1)

pf (i1)2p
g
u+ϵh(i2)

2

)
di1 di2

=−
∫
R2

∂pf,gu+ϵh(i1, i2)

∂ϵ
log

pf,gu+ϵh(i1, i2)

pf (i1)p
g
u+ϵh(i2)

+
∂pf,gu+ϵh(i1, i2)

∂ϵ
−

∂pgu+ϵh(i2)

∂ϵ

pf,gu+ϵh(i1, i2)

pgu+ϵh(i2)
di1 di2

=−
∫
R2

∂pf,gu+ϵh(i1, i2)

∂ϵ

(
log

pf,gu+ϵh(i1, i2)

pf (i1)p
g
u+ϵh(i2)

+ 1

)
di1 di2

+

∫
R2

∂pgu+ϵh(i2)

∂ϵ

pf,gu+ϵh(i1, i2)

pgu+ϵh(i2)
di1 di2︸ ︷︷ ︸

(∗)
(3.20)

where we can rewrite (*) as

(∗) =
∫
R

∂pgu+ϵh(i2)

∂ϵ

1

pgu+ϵh(i2)

(∫
R
pf,gu+ϵh(i1, i2) di1

)
︸ ︷︷ ︸

pgu+ϵh(i2)

di2

=
∂

∂ϵ

[∫
R
pgu+ϵh(i2) di2

]
︸ ︷︷ ︸

1

= 0 .

(3.21)



3.2. SIMILARITY MEASURES 21

This result, together with the first variation of the estimator pf,gu (Eq. 3.9) and ϵ = 0, yields

δhJMI[u] =−
1

|Ω|

∫
R2

∫
Ω

(EMI(i1, i2, u) + 1)∂2Gγ(f(x)− i1, g(x+ u(x))− i2)

∇g(x+ u(x)) · h(x) dx di1 di2

=− 1

|Ω|

∫
Ω

((EMI + 1) ⋆ ∂2Gγ)(f(x), g(x+ u(x)), u)

∇g(x+ u(x)) · h(x) dx

=− 1

|Ω|

∫
Ω

(∂2(E
MI + 1) ⋆ Gγ)(f(x), g(x+ u(x)), u)

∇g(x+ u(x)) · h(x) dx .

(3.22)

In this calculation a convolution ⋆ with respect to the intensity variables i1 and i2 appears,
which commutes with the differential operator ∂2.

With this consideration we finally obtain

δhJMI[u] = −
1

|Ω|

∫
Ω

(Gγ ⋆ ∂2E
MI)(f(x), g(x+ u(x)), u)∇g(x+ u(x)) · h(x) dx . (3.23)

Again we define the so-called global intensity comparison function LMI : R2 7→ R as

LMI
u (i1, i2) =−

1

|Ω|
Gγ ⋆ ∂2E

MI(i1, i2, u)

=− 1

|Ω|
Gγ ⋆ ∂2 log

pf,gu (i1, i2)

pf (i1)p
g
u(i2)

=− 1

|Ω|
Gγ ⋆

pf (i1)p
g
u(i2)

pf,gu (i1, i2)

∂2p
f,g
u (i1, i2)p

f (i1)p
g
u(i2)− pf,gu (i1, i2)p

f (i1)p
g′
u (i2)

pf (i1)2p
g
u(i2)2

=− 1

|Ω|
Gγ ⋆

(
∂2p

f,g
u (i1, i2)

pf,gu (i1, i2)
− pg′u (i2)

pgu(i2)

)
(3.24)

to rewrite Eq. 3.23 as

δhJMI[u] =

∫
Ω

LMI
u (f(x), g(x+ u(x)))∇g(x+ u(x)) · h(x) dx (3.25)

and find the Euler-Lagrange Equation for JMI[u] in the form

∇uJMI = 0 with ∇uJMI(x) = LMI
u (f(x), g(x+ u(x)))∇g(x+ u(x)) . (3.26)
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3.2.3 Correlation Coefficients

Another widely used similarity criterion in image registration are the correlation coefficients,
also called cross correlation (CC) [Cac00], [Her02]. This robust criterion measures the affine
dependency of the intensity pairs of the images and is more restrictive than mutual information.
We refer to [Her02] for nice illustrations of different similarity measures. As stated in [Cac00]
CC is invariant by an affine rescaling of the intensity range of one of the images. In practice this
means that it is insensitive to a uniform bias and a contrast change, as long as it is linear.
We will also introduce a local version of this similarity criterion. In that case the computation
of the correlation coefficients is based on locally estimated statistical quantities. This has the ad-
vantage that bias is estimated locally around each point in the image. Even though this assumes
a uniform bias within each window of the estimator, it allows for a varying non-uniform bias
within the image from a global point of view [Cac00].

The definition of CC is based on the mean µ and variance v of the images. For a given pdf,
which can be estimated by a one dimensional Parzen estimator according to Eq. 3.7 and Eq. 3.8,
these quantities are given as:

µ1 =

∫
R
i1p

f (i1) di1, v1 =

∫
R
i21p

f (i1) di1 − µ2
1

µ2(u) =

∫
R
i2p

g
u(i2) di2, v2(u) =

∫
R
i22p

g
u(i2) di2 − µ2(u)

2

(3.27)

With the covariance of Xf andXg
u noted as υ1,2(u)

υ1,2(u) =

∫
R2

i1i2p
f,g
u (i1, i2) di1 di2 − µ1µ2(u) (3.28)

the functional describing the dissimilarity based on the correlation coefficients is defined as:

JCC[u] = −
υ1,2(u)

2

υ1υ2(u)
(3.29)

First Variation

In order to employ this similarity measure in our variational framework we need to calculate the
first variation of the functional JCC[u]. Even though the results are given in [Her02], we want to
conduct a comprehensible calculation here explicitly.
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First we compute:

∂µ2(u+ ϵh)

∂ϵ
=

∫
R
i2
∂pgu+ϵh(i2)

∂ϵ
di2

=

∫
R2

i2
∂pf,gu+ϵh(i1, i2)

∂ϵ
di1 di2

∂υ2(u+ ϵh)

∂ϵ
=

∫
R2

i22
∂pf,gu+ϵh(i1, i2)

∂ϵ
di1 di2 − 2µ2(u)

∂µ2(u+ϵh)
∂ϵ︷ ︸︸ ︷∫

R2

i2
∂pf,gu+ϵh(i1, i2)

∂ϵ
di1 di2

=

∫
R2

i2(i2 − 2µ2(u))
∂pf,gu+ϵh(i1, i2)

∂ϵ
di1 di2

∂υ1,2(u+ ϵh)

∂ϵ
=

∫
R2

i1i2
∂pf,gu+ϵh(i1, i2)

∂ϵ
di1 di2 − µ1

∂µ2(u+ϵh)
∂ϵ︷ ︸︸ ︷∫

R2

i2
∂pf,gu+ϵh(i1, i2)

∂ϵ
di1 di2

=

∫
R2

i2(i1 − µ1)
∂pf,gu+ϵh(i1, i2)

∂ϵ
di1 di2

(3.30)

With these results we calculate ∂JCC[u+ϵh]
∂ϵ

to

∂JCC[u+ ϵh]

∂ϵ
=−

2υ1,2(u+ ϵh)∂υ1,2(u+ϵh)

∂ϵ

υ1υ2(u+ ϵh)
+

υ1,2(u+ ϵh)2 ∂υ2(u+ϵh)
∂ϵ

v1v2(u+ ϵh)2

=

∫
R2

ECC(i1, i2, u+ ϵh)
∂pf,gu+ϵh(i1, i2)

∂ϵ
di1 di2

(3.31)

where ECC : R2 × V 7→ R is defined as:

ECC(i1, i2, ·) = −
1

υ1υ2(·)
(2υ1,2(·)i2(i1 − µ1)− JCC[·]υ1i2(i2 − 2µ2(·))) (3.32)

By setting ϵ = 0, the first variation of the Parzen estimator pf,gu (Eq. 3.9) and the same argumen-
tation regarding the convolution as used for Eq. 3.23 in the calculation of MI, we obtain

δhJCC[u] =
1

|Ω|

∫
Ω

(Gγ ⋆ ∂2E
CC)(f(x), g(x+ u(x)), u)∇g(x+ u(x)) · h(x) dx . (3.33)
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Again we define a global intensity comparison function LCC
u : R2 7→ R as:

LCC
u (i1, i2) =

1

|Ω|
(Gγ ⋆ ∂2E

CC)(i1, i2, u)

=− 1

|Ω|
Gγ ⋆ (

1

υ1υ2(u)
(2υ1,2(u)(i1 − µ1) + JCC[u]υ12i2 − 2µ2(u)))

(3.34)

Since ∂2E
CC is a sum of linear terms and Gγ is a symmetric and normalized kernel, the convo-

lution with respect to the intensity variables has according to Theorem A.1 no effect and is thus
redundant. In this case we have

(Gγ ⋆ ∂2E
CC)(i1, i2, u) = ∂2E

CC(i1, i2, u) (3.35)

and can write

LCC
u (i1, i2) =−

2

|Ω|

[
υ1,2(u)

υ2(u)

(
i1 − µ1

υ1

)
+ JCC[u]

(
i2 − µ2(u)

υ2(u)

)]
. (3.36)

In order to regard non-stationarities in the relation between intensities, we can make this estima-
tor local. This can be done by employing Eq. 3.12 instead of Eq. 3.9 to estimate the jpdf. The
local cross correlation (LCC) is then defined as:

JLCC[u] =

∫
Ω

JCC[u](y) dy =

∫
Ω

− υ1,2(u, y)
2

υ1(y)υ2(u, y)
dy (3.37)

We calculate the first variation as

δhJLCC[u] =

∫
Ω

1

Gβ(y)

∫
R2

∫
Ω

ELCC(i1, i2, u, y)∂2Gγ(f(x)− i1, g(x+ u(x))− i2)

Gβ(x− y)∇g(x+ u(x)) · h(x) dx di1 di2 dy

=

∫
Ω

∫
Ω

1

Gβ(y)
(Gγ ⋆ ∂2E

LCC)(f(x), g(x+ u(x)), u, y)

Gβ(x− y)∇g(x+ u(x)) · h(x) dy dx

=

∫
Ω

1

Gβ(x)
(Gγ ⋆ Gβ ⋆ ∂2E

LCC)(f(x), g(x+ u(x)), u, x)

∇g(x+ u(x)) · h(x) dx

(3.38)
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where ELCC : R2 × V ×Ω 7→ R is defined as:

ELCC(i1, i2, ·, x) =

− 1

υ1(x)υ2(·, x)
(2υ1,2(·, x)i2(i1 − µ1(x))− JCC[·](x)υ1(x)i2(i2 − 2µ2(·, x)))

(3.39)

Again we can neglect the convolution with Gγ and obtain for the correlation coefficients with
locally estimated densities the intensity comparison function LLCC

u : R2 ×Ω 7→ R:

LLCC
u (i1, i2, x) =Gβ ⋆

−2
Gβ(x)

[
υ1,2(u, x)

υ2(u, x)

(
i1 − µ1(x)

υ1(x)

)
+ JCC[u](x)

(
i2 − µ2(u, x)

υ2(u, x)

)]
(3.40)

Rewriting Eq. 3.38 to

δhJLCC[u] =

∫
Ω

LLCC
u (f(x), g(x+ u(x)), x)∇g(x+ u(x)) · h(x) dx (3.41)

yields finally the Euler-Lagrange Equations, which are given for the global case by

∇uJCC = 0 with ∇uJCC(x) = LCC
u (f(x), g(x+ u(x)))∇g(x+ u(x)) (3.42)

and for the local case by

∇uJLCC = 0 with ∇uJLCC(x) = LLCC
u (f(x), g(x+ u(x)), x)∇g(x+ u(x)) . (3.43)

3.3 Flows of Diffeomorphisms

The most natural way of optimizing a similarity criterion J and tackle the minimization problem
posed in Eq. 3.1 is to come up with a sequence of transformations ϕk = id + uk which follows
iteratively the direction of the gradient∇uk

J . However, since we are looking for an optimal de-
formation ϕ which belongs to a function space, we need to employ a regularization technique to
ensure the regularity of ϕ. As already mentioned in Section 2.2 this regularization is often done
by adding a, with some scalar factor α ∈ R+ weighted, penalty term R[u] to the cost functional
J [u]. This penalty term measures the irregularity of the transformation ϕ and is often used to
introduce some physical knowledge to the model. This regularization originates in the Tikhonov
functional [Her01a], where α controls the influence of the regularization term R. Commonly
used approaches based on this kind of regularization can be found in [Mod04] or [Her01a].
Another very intuitive approach of regularization was presented in [Che02], where the regular-
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izer operator R is directly applied to the gradient ∇uk
J of the cost functional. We will employ

and focus on the latter regularizer.

We can now consider the first step of a gradient algorithm with an initial deformation ϕ0 = id.
By applying the regularizer directly to the so-called (driving) force field ∇uk

J we obtain a new
transformation ϕ1 as

ϕ1 = ϕ0 + ϵR(∇u0J ) = id+ ϵR(∇0J ) . (3.44)

However, instead of applying this relation iteratively to obtain a sequence ϕk we stick to the
template propagation method proposed in [Che02]. In this approach the deformation field ϕ1

is immediately applied to the template image g. This results in a new, propagated image g1 =

g ◦ (id+ ϵR(∇0J )). We can now consider a new matching problem of f and g1 with the initial
deformation ϕ0 = id. The deformation ϕk is then defined as the transformation that connects the
original template image g to the propagated template image gk after k iterations by gk = g ◦ ϕk.

Overall this reduces to the following approach:

νk ← L(f, g ◦ ϕk)∇guk
(displacement field)

νk ← R(νk) (regularization)

ϕk+1 ← ϕk ◦ (id+ ϵkνk) (update)

uk+1 ← ϕk+1 − id

(3.45)

The computation of νk is based on the evaluation of the intensity comparison function L of a
certain similarity criterion. We calculated intensity comparison functions for SSD, MI and (L)CC
in Section 3.2. The regularization in this method is done locally for each displacement field νk

instead of the complete transformation ϕk. Compared to the mentioned Tikhonov regularizers
this has the huge advantage that large deformations are not necessarily unreasonably penalized.
As stated in [Che02] there is always an ϵk so that ϕk+1 is a diffeomorphism, provided that ϕk is
a diffeomorphism and νk is sufficiently smooth.

This algorithm was presented in [Che02], where a continuous formulation of Algorithm 3.45
and statements on the regularization are given. It is proposed to set the regularizerR(u) = κ ⋆ u

where κ is a generic linear filter. Since a Gaussian filter with standard deviation σ is suitable for
this purpose, the regularization can be done very efficiently as we will investigate in Section 4.2.
To recover local or global deformations the choice of σ is intuitive and application dependent.

We refer to [Che02] for more details on the continuous formulation and regularization.



Chapter 4

Implementation and Assembly of Key
Building Blocks

In the preceding chapters we gave an introduction to NVIDIA CUDA, nonrigid registration meth-
ods and introduced a certain registration algorithm within a variational framework. To employ
different similarity measures within this approach we provided variational gradients for three
different cost functions based on SSD, MI and LCC. While the computation of MI relies on the
availability of a jpdf estimation of moving and reference image, LCC depends on an efficient
computation of local statistics. Furthermore efficient filtering is mandatory to provide a fast reg-
ularization of the deformation fields. The presented registration algorithm breaks down to two
major building blocks: Gaussian filtering (regularization, estimation of local statistics) and joint
histogram computation (estimation of jpdf). In this chapter we will describe how local statistics
can be computed with a Gaussian filter and how this type of filter can be implemented in a re-
cursive and very efficient way. Furthermore we will introduce novel optimization techniques to
compute joint histograms efficiently on CUDA compatible GPUs. Finally we can concatenate
these blocks and present a whole nonrigid registration pipeline which is based on the matching
algorithm presented in Chapter 3.

4.1 Computation of Local Statistics

If LCC is employed as similarity measure, local variances and local means need to be estimated.
As already mentioned in Section 3.2 this is done with a Parzen estimator. Even if we could use
any symmetric window function for this estimation, we used a Gaussian G since it is the only

27
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isotropic kernel with the following two properties [Cac00, Kan92]:

1. The Gaussian convolution is separable. This means that a convolution of a 3D image with
a 3D Gaussian kernel is equivalent to a successive convolution with three 1D Gaussian
kernels.

2. As we will present in Section 4.2 the convolution with a 1D Gaussian kernel can be ap-
proximated by a high efficient recursive filter. It also turns out that this filter is independent
of the standard deviation of the Gaussian.

With the following consideration we can easily see, that the local mean µf (x) of a function f

is then estimated by a convolution with a Gaussian kernel Gβ with standard deviation β. This
approach originates in the local versions of Eq. 3.7 and Eq. 3.27.

µf (x) =

∫
R
i

1

Gβ(x)

∫
Ω

Gγ(f(y)− i)Gβ(y − x) dy di

=

∫
Ω

1

Gβ(x)︸ ︷︷ ︸
=1(∗)

(Gγ ⋆ id)(f(y))Gβ(y − x) dy

=

∫
Ω

f(y)Gβ(y − x) dy = (Gβ ⋆ f)(x)

(4.1)

(∗): At the image boundaries this is only true if the convolution with respect to y is done with a
complete Gaussian kernel by for example padding the image.

Again we used the fact that two convolutions, one with respect to the intensity variable i and
one with respect to the space variable y emerge. We also employed Theorem A.1 which states
that (Gγ ⋆ id)(f(y)) is equal to f(y).

The choice of β defines the neighborhood, which contributes to the computation of the local
mean, and is intuitive.
For a given displacement field u we recap gu : Ω 7→ R as gu(x) = g(x + u(x)) and can now
compute all local statistics around each voxel with Gaussian convolutions as follows:

µf (x) = (Gβ ⋆ f)(x) , µg(x, u) = (Gβ ⋆ gu)(x)

υf (x) = (Gβ ⋆ f
2)(x)− (µf (x))

2 , υg(x, u) = (Gβ ⋆ g
2
u)(x)− (µg(x, u))

2
(4.2)

υf,g(x, u) = (Gβ ⋆ fgu)(x)− µf (x)µg(x, u) (4.3)
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4.2 Efficient Gaussian Filtering

4.2.1 Application

In every iteration of the presented registration process a Gaussian filter is applied to regularize the
displacement field. If LCC is employed as similarity measure, also local means, local variances
and local correlations are estimated using a Gaussian filter as shown in Section 4.1. Thus the
overall runtime is significantly dominated by Gaussian filtering which is used as regularizer and
estimator for local statistics.

One common approach to implement this filtering technique is to compute the convolution
directly. This so-called direct convolution, implemented as separable filter with a finite-length
approximation to a Gaussian, is already very efficient for filter kernels with a small standard
deviation σ.

In [Hal06] two popular recursive infinite impulse response (IIR) filters, the method of Deriche
[Der93] and the method of van Vliet et al. [vV98, You95], are compared to direct convolution.
Both recursive methods are approximating a Gaussian filter. While the computation time of di-
rect convolution linearly depends on σ, the cost of the recursive approaches is constant for any
choice of σ. It turns out that especially for larger σ recursive methods outperform direct convo-
lution. The independence of the computation time of σ as well as the good parallelizability of
these approaches motivated the investigation of recursive Gaussian filters on the GPU. However,
since Deriche’s method yields more accurate results for σ < 32 than van Vliet’s implementation
[Hal06] and we will not choose a σ ≥ 32, we will solely focus on Deriche’s approach in the
following.

4.2.2 Fast Recursive Deriche Filter

We will now present a theoretical introduction to an IIR filter, which is applicable for separable
Gaussian filtering and was introduced by Deriche in [Der87, Der90, Der93]. Even if we most
often follow the notation used by Deriche, we will, with ambition to provide better readability,
slightly adapt it. Within the scope of this thesis we need to restrict the theoretical introduction
to the basics, which are required to get a rough understanding of this approach. For a further
understanding of filter design, we refer to Deriche’s work and the article of Farnebäck [Far06].

Theoretical Background

We consider the following stable and non recursive convolution operation
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yi =
N−1∑
k=0

h(k)xi−k (4.4)

which relates some input sequence xi to an output sequence yi. This operation is, dependent
on the length N , computationally more or less expensive. In the context of Gaussian filtering,
Eq. 4.4 is equivalent to a half Gaussian filter and N defines the cut-off limit of the finite-length
approximation to the Gaussian. According to [Der93] and [Hal06] a value of roughly 4σ is
usually a good choice for N . This is why the computational cost of a direct convolution directly
depends on σ.

With the application of the Z-transform [Mul99, Che01, Phi98] to the discrete impulse re-
sponse h(k), which will be the sampled Gaussian kernel, we can describe Eq. 4.4 with the
transfer function

H(z−1) =
N−1∑
k=0

h(k)z−k . (4.5)

The crucial idea behind recursive filter approximation is now, to exactly represent or approx-
imate Eq. 4.5 with a rational transfer function of the form

Happr(z
−1) =

∑n−1
k=0 bkz

−k

1 +
∑n

k=1 akz
−k

. (4.6)

With this representation we could now highly benefit of the computationally cheaper solution of
the n-th order recursive system

yi =
n−1∑
k=0

bkx(i− k)−
n∑

k=1

aky(i− k) , (4.7)

which is characterized by Eq. 4.6 and requires just 2n instead of N operations per output element
yi. Since according to [Der93] an approximation of a Gaussian filter is sufficiently elaborate for
most applications for n ≥ 3, we consider and investigate a 4-th order approximation (n = 4) in
the following.

As already mentioned, the causal sequence of Eq. 4.4 just describes a half Gaussian filter.
The fact that a full Gaussian filter is non-causal, indeed the yi’s depend on xi’s ahead, requires
an additional consideration to apply this recursive approach.

First we can rewrite the impulse response g(k) = e−
k2

2σ2 of a full Gaussian filter as the sum
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of the two halves of this filter as g(k) = g+(k) + g−(k) with

g+(k) =

g(k), if k ≥ 0,

0, else
(4.8)

g−(k) =

0, if k ≥ 0,

g(k), else .
(4.9)

With this convention we can describe a 4-th order approximation gappr(k) of the impulse response
g(k) with the Z-transforms

G+
appr(z

−1) =
∞∑
k=0

g+appr(k)z
−k =

n+
0 + n+

1 z
−1 + n+

2 z
−2 + n+

3 z
−3

1 + d+1 z
−1 + d+2 z

−2 + d+3 z
−3 + d+4 z

−4
, (4.10)

G−
appr(z) =

0∑
k=−∞

g−appr(k)z
k =

n−
1 z + n−

2 z
2 + n−

3 z
3 + n−

4 z
4

1 + d−1 z + d−2 z
2 + d−3 z

3 + d−4 z
4
. (4.11)

These systems describe the two independent recursive systems

y+k = n+
0 xk + n+

1 xk−1 + n+
2 xk−2 + n+

3 xk−3

− d+1 y
+
k−1 − d+2 y

+
k−2 − d+3 y

+
k−3 − d+4 y

+
k−4 k = 1, . . . , N

(4.12)

y−k = n−
1 xk+1 + n−

2 xk+2 + n−
3 xk+3 + n−

4 xk+4

−d−1 y−k+1 − d−2 y
−
k+2 − d−3 y

−
k+3 − d−4 y

−
k+4 k = N, . . . , 1

(4.13)

Because of the relation Gappr(z) = Z[gappr(k)] = Z[g+appr(k) + g−appr(k)] = Z[g+appr(k)] + Z[g−appr(k)] =

G+
appr(z

−1) +G−
appr(z) the result yk is obtained by calculating yk = y+k + y−k [Der93]. We are also

interested in an even impulse response, the Gaussian is a symmetric filter, and can thus set

d−i = d+i i = 1, . . . , 4

n−
i = n+

i − d+i n
+
0 i = 1, . . . , 3

n−
4 = −d+4 n+

0 .

(4.14)

It remains to determine the filter coefficients d+i for i = 1, . . . , 4 and n+
i for i = 0, . . . , 3.

In [Der93] and [Far06] different design techniques are presented to obtain these parameters.
Even if this parameter design needs to be carried out only once and the results can be borrowed
from papers as [Der93, Far06], we want to provide some more background.
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A general 4-th order approximation of the operator g+(k) is given by

g+appr(k) =
4∑

i=1

αie
−λi

k
σ . (4.15)

Since we want to optimize real coefficients, αi and λi (i = 1, . . . , 4) may be complex but pairwise
conjugate. This means specifically α1 = α2, α3 = α4, λ1 = λ2 and λ3 = λ4. After rewriting Eq.
4.15 according to Eq. A.2 in Section A as

g+appr(k) =
2∑

i=1

(ai cos
ωi

σ
k + bi sin

ωi

σ
k)e−

βi
σ
k, k ≥ 0 (4.16)

we can compute all 8 coefficients a1, a2, b1, b2, ω1, ω2, β1 and β2 by fitting Eq. 4.16 to a continu-
ous Gaussian. This is done by solving the nonlinear optimization problem

argmin
a1,a2,b1,b2,ω1,ω2,β1,β2

i=10σ∑
i=0

(e−
i2

2σ2 − g+appr(i))
2 (4.17)

with for example Matlab. In order to obtain a good fit for any scale, Deriche suggests in [Der93]
to use a σ of 100 and a set of 1000 sample points for this optimization.
The coefficients d+i for i = 1, . . . , 4 and n+

i for i = 0, . . . , 3 can be calculated by

n+
0 = a1 + a2

n+
1 = e−

β1
σ (−(a1 + 2a2) cos(

ω1

σ
) + b1 sin(

ω1

σ
))

e−
β2
σ (−(2a1 + a2) cos(

ω2

σ
) + b2 sin(

ω2

σ
))

n+
2 = a1e

−2
β2
σ + a2e

−2
β1
σ + 2e−

β1
σ
−β2

σ ((a1 + a2) cos(
ω1

σ
) cos(ω2

σ
)

−b1 cos(ω2

σ
) sin(ω1

σ
)− b2 cos(

ω1

σ
) sin(ω2

σ
))

n+
3 = e−

β1
σ
−2

β2
σ (−a1 cos(ω1

σ
) + b1 sin(

ω1

σ
)) + e−2

β1
σ
−β2

σ (−a2 cos(ω2

σ
) + b2 sin(

ω2

σ
))

d+1 = −2e−
β1
σ cos(ω1

σ
)− 2e−

β2
σ cos(ω2

σ
)

d+2 = 4e−
β1
σ
−β2

σ cos(ω1

σ
) cos(ω2

σ
) + e−2

β1
σ + e−2

β2
σ

d+3 = −2e−
β1
σ
−2

β2
σ cos(ω1

σ
)− 2e−2

β1
σ
−β2

σ cos(ω2

σ
)

d+4 = e−2
β1
σ
−2

β2
σ

(4.18)

This relation is obtained by applying a Z-transform to Eq. 4.16 [Che01, p. 210] and a comparism
of the coefficients. The detailed calculation can be found in Eq. A.4 in Section A. The missing
coefficients d−i and n−

i i = 1, . . . , 4 are computed according to Eq. 4.14.
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Implementation

Since it turns out that filtering is next to the joint histogram computation, only if MI is used, the
dominating building block in terms of computation time, we want to investigate some aspects of
the implementation more thoroughly.

Our recursive implementation for filtering an arbitrary 3D volume following Deriche’s ap-
proach, consists of two steps per dimension. Since we allow to choose any σc, σr and σd for
filtering in column, row or depth direction, we need to compute the filter parameters separately
for each dimension. This step mainly breaks down to a computation of the coefficients according
to Eq. 4.18 and a subsequent normalization. For this normalization step we create an array x(i)

which is with size 2⌊10σi⌋+ 1 large enough to catch all filter responses and initialized as

x(i) =

1, if i = ⌊10σi⌋,

0, else
(4.19)

We filter this array by applying our recursive Deriche filter with the coefficients obtained by Eq.
4.18 and compute α =

∑2⌊10σi⌋
i=0 x(i). In order to have a mass conserving filter this sum needs to

be equal to 1. We fulfill this condition by scaling the coefficients n+
i with 1

α
for i = 0, . . . , 3.

With these coefficients we can now filter along the according dimension in a second step.
Among different approaches, we observed lowest computation times by computing one com-
plete line of the volume per thread. Common volumes are of sufficient size so that the GPU is
occupied by a reasonable number of threads. As experimental results in Chapter 5 reveal, this
approach allows due to coalesced memory access for very efficient filtering in row (same col-
umn, same slice) and depth (same column, same row) direction. Filtering in column direction
suffers significantly of uncoalesced memory access. We tackled this problem by employing lo-
cal memory to read and write intermediate results coalesced, which is an important optimization.
Furthermore we used fast registers to cache the four xk and four yk in the computation of Eq.
4.12 and Eq. 4.13. With this optimization redundant access to global memory is avoided and the
original volume is only read twice, once for the causal (Eq. 4.12) and once for the non-causal
(Eq. 4.13) filtering step. Again, local memory allows to always read the image data for the
non-causal filtering step coalesced.

Boundary conditions can be imposed by padding every line of the volume with
max(5⌊σc,r,d + 0.5⌋, 10) elements on either side. We set these elements to x(0) at the start and
x(n−1) at the end of the line respectively, what corresponds to clamping as boundary condition.
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4.3 Efficient Histogram Computation

Histograms, which show the frequency of occurrence of data elements, are a frequently employed
analysis tool not just in image registration, but also in other fields as for example data mining. In
multimodal image registration, joint histograms are the basis of a very powerful and robust cri-
terion, MI. Since many clinical applications call for robust, high accurate, real-time registration
based on MI, it is important to adapt and especially optimize existing histogram algorithms in
this context.

Not least because improvements to joint histogram computation are not restricted to registra-
tion, we will in the following of this chapter present the results of the research that we conducted
on optimizing existing histogram algorithms.

One widely pursued approach to efficient (joint) histogram computation is to employ GPUs.
Although histogram computation is simple and trivial to implement on the CPU, it is a challeng-
ing task, to parallelize it efficiently on the GPU [Pod07].

The problem arising in the parallel calculation of a histogram with B bins distributed over
N threads is illustrated in Figure 4.1. This example shows potential and unpredictable, data
dependent collisions of different threads while updating the same histogram bin.

As stated in [Pod07], former approaches based on shader programming rely on expensive pre-
processing steps, as sorting the pixels by intensity value, which are undesirable. With NVIDIA
CUDA a new architecture for general purpose parallel computing is available. As already men-
tioned, especially the availability of shared memory and synchronization routines enable efficient
solutions on the GPU for more complex problems. New algorithms for histogram computation
on CUDA compatible devices were presented in [Pod07], [Sha07b], [Bro09], [Sha10], [Che09],
[Sha07a] and [Lin08].

In [Pod07] a very efficient 64 bin histogram computation was proposed and extended to 256
bins by simulating atomic intra-warp updates to the shared memory.

In order to compute thousands of bins, this update mechanism was also used in the first
method presented in [Sha07b] (labeled Method1). This algorithm lacks data independence, but
it has the key advantage of low memory requirement and very good performance on real data.
To overcome data dependence, the second method proposed in [Sha07b] (Method2) ensures col-
lision free updates. This method requires the allocation of a full histogram for every thread in
the global memory, which results in additional memory requirement. Dependent on the data, it
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Thread(1) Thread(2) Thread(i) Thread(N)... ...

histogram[1] histogram[2] ... histogram[B]

data[N]data[1] data[2] ... data[i] ...

data[N+N]data[N+1] data[N+2] ... data[N+i] ...

data[NM+N]data[NM+1] data[NM+2] ... data[NM+i] ...

Figure 4.1: Parallel calculation of a histogram with B bins distributed over N threads. Histogram
updates conflict and require synchronization of the threads or atomic updates to the histogram
memory.

also underperforms Method1 for high bin ranges [Sha07b], which often occur in joint histogram
computations.

A new algorithm – named “sort and count” – was recently proposed in [Sha10]. This algo-
rithm possesses very good scaling with high bin numbers. For reasonable joint histogram sizes
around 75× 75 bins this approach performs similar to Method1.

A self-optimizing histogram algorithm is presented in [Bro09]. Because of the very expen-
sive preprocessing time of several seconds, this data dependent optimization does not meet our
needs. In [Che09] an algorithm which sorts the image by intensity values was presented. Once
the image is sorted, faster histogram computations are possible. Next to the high memory re-
quirement because of additional stored coordinates, the expensive preprocessing (sorting) is a
major drawback.

In addition to these exact computations, very fast algorithms were proposed in [Sha07a] and
[Lin08] to approximate histograms and MI.

After we gave a rough overview over work related to this problem we will state the problem in
Section 4.3.1. In Section 4.3.2 we will introduce an existing algorithm for histogram computation
and present three novel optimization strategies for this approach in Section 4.3.3.
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4.3.1 Problem Formulation

To evaluate Eq. 3.18 an estimation of the marginal probability distributions pX(x) and pY (y) and
the joint probability distribution pXY (x, y) is required. This is done by computing histograms or
the joint histogram respectively. Since the similarity measure has to be evaluated in each itera-
tion, it is crucial to have a very fast and efficient algorithm for histogram computation in place,
when MI is used. The computation time of MI is dominated by the joint histogram computation.

For two normalized discrete images on ΩD ⊂ Zn, Ir : ΩD 7→ [0.0, 1.0] (reference image) and
Im : ΩD 7→ [0.0, 1.0] (moving image) the joint histogram with Br × Bm bins can be described as:

J(i, j) =
∑
x∈ΩD

δ(x) (4.20)

with δ(x) =

{
1, if Ir(x) ∈ [ i

Br
, i+1

Br
] and Im(ϕ(x)) ∈ [ j

Bm
, j+1

Bm
]

0, otherwise
(4.21)

where ϕ(x) is a geometric transformation applied to the moving image.

By employing interpolation both images Ir and Im can be evaluated continuously. At this
point we should also give a short remark to stay consistent in terms of notations: In the presented
framework the continuous image f can be obtained by applying an interpolation scheme to the
discrete image Ir, g is derived from Im respectively.

As shown in [Sha07a], joint histogram computation of Br × Bm bins is equivalent to the
computation of a single histogram with Bj = BrBm bins on Ic by combining the intensity values
of the two original images such that,

Ic(ϕ(·), x) =
Bm((Br − 1)Ir(x) + Im(ϕ(x)))

Bj − 1
,Bj > 1 . (4.22)

This new image, usually created in a preprocessing step, requires additional memory. This can
be problematic for the registration of large datasets.

For histogram computation Method1 is very efficient for common data. There are neither lim-
itations of the number of histogram bins nor a loss of accuracy by approximations. We will now
present the base algorithm (Method1) and three optimization techniques for this approach, which
enable a high efficient calculation in terms of computation time as well as memory requirement.
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4.3.2 Base Algorithm

When parallelizing histogram computations on GPU, the main bottleneck is that different threads
might compete by updating the same histogram bin. Even if there is in general no “mutex”
mechanism available in CUDA1 a solution was presented in [Pod07] and employed in Method1

for an efficient parallel histogram computation.

This approach is based on the fact that within one warp (32 threads) all threads execute the
same instructions in parallel (“at the same time”). Within one warp an atomic update of a certain
histogram bin can then be simulated by tagging data with the ID of the updating thread. If more
than one thread updates this data, exactly one thread will succeed and data tagged with this thread
ID will remain. Thus it is possible to check which thread actually succeeded and redo the update
for all not successful threads [Pod07, NVI10c]. This is why this algorithm is data dependent
and performs worst for images with constant intensity values, where all threads of a warp collide
while updating the same bin and hence need to be serialized. How to simulate this atomic update
within one warp can be found in Listing B.1 in Appendix B.

Since global memory is slow, shared memory is used to hold temporary histograms. In
Method1, an unsigned integer is used in shared memory to hold the tag in the 5 (log232) most
significant bits and the bin counter in the remaining 27 bits for each bin. The limitations for
this approach arise because shared memory is limited to 16 kB per block and in order to occupy
the GPU, several warps need to be run within one execution block. As a result, a partial joint
histogram has to be allocated in shared memory for every warp.

In order to employ this algorithm for joint histogram computation, a new image is first created
according to Eq. 4.22. This operation is expensive since it increases the memory requirement by
a full image size. If no additional memory is available Eq. 4.22 has to be evaluated within each
kernel call.

The computation of a reasonable joint histogram of size 80× 80 with 4 warps (128 threads)
per block would exceed the available shared memory by far (with a memory requirement of
100 kB = 4 warps × 6400 bins × 4 Bytes). For this reason, joint histograms usually cannot be
computed with one kernel call. In fact, several kernel calls are necessary to compute step by step
the complete joint histogram by computing a certain range of bins within each call.

In the following we propose to extend this algorithm with three major optimizations, which
focus on execution time as well as on memory requirement.

1As described in [NVI10c], this functionality depends on the compute capability of the device. Potential im-
provements based on atomic operations remain to be investigated.
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4.3.3 Contribution

Multiple Bin Encoding (MBE)

In order to use the shared memory more efficiently, we encode two bins in 26 of the 27 less
significant bits of an unsigned integer. This concept is shown in Fig. 4.2. Of course this makes
collisions more likely to happen, since even updates to two different bins may conflict because
they are encoded in the same integer. Nevertheless MBE allows the handling of twice the number
of bins per kernel call. This results in less overall kernel calls and therefore in less global memory
access, which is especially important when it comes to expensive interpolation schemes and no
spare memory is available. With this optimization the data of a bin is encoded with 13 bits.
Overflows are avoided by regularly updating the block histograms in the global memory. This
optimization is always applicable and has no influence on memory requirements.

Unoptimized organization of one element in the shared memory

Optimized organization of one element in the shared memory

used for tag ID (5 bits)

used as frequency counter of bins (27 bits)

used as frequency counter of bins with odd index (13 bits)

not used

used as frequency counter of bins with even index (13 bits)

Figure 4.2: Example of MBE using an unsigned integer to encode two bins instead of one. Bin1
and Bin2 are encoded in the first word, Bin3 and Bin4 in the second word, etc. [Led10]

Bin Caching (BC)

If spare global memory is available, this optimization should be used in addition to MBE. In-
stead of performing a preprocessing step to create Ic, we use the first kernel call to compute the
resulting bin number for a certain voxel pair. This is important since we avoid an unnecessary
reread of the preprocessed image. It is also more efficient to store the resulting bin number
instead of a combined intensity value. During the first kernel call the resulting bin number
[Bm((Br − 1)Ir(x) + Im(ϕ(x)))] is stored to additional global memory. Joint histograms of more
than 255 × 255 bins are very seldom of interest. In this case a resulting bin will never exceed
16 bit. We propose to pack two bin numbers into an unsigned integer which saves 50% of the
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additional required memory compared to the commonly used preprocessing. This results not just
in an optimization in terms of memory demand, but also in a reduced global memory access.
Subsequent kernels just read from the global memory the bin of the joint histogram that needs
to be incremented. Especially in cases where several kernel calls are necessary or expensive
interpolation schemes are used, this is a very valuable optimization.

However, this approach requires additional memory of 50% of an image size. This is an
improvement compared to the regular preprocessing step, but still too much to claim general
applicability for joint histogram computation. See Figure 4.3 for a schematic flowchart of this
optimization.

yesno 1st 
kernel 

call

read histogram
bin for each

voxel

compute and 
save histogram

bin for each
voxel

histogram
bin for each
voxel pair

I_r I_m

process
histogram bin

Inter-
polation

Inter-
polation

read init

Figure 4.3: Schematic flowchart of the kernel optimized with BC. [Led10]

Smart Texture Lookup (STL)

When there is not enough global memory temporarily available to apply BC or to use the regular
preprocessing according to Eq. 4.22 the resulting bin number [Bm((Br−1)Ir(x)+Im(ϕ(x)))] needs
to be computed within each kernel call. For this case we introduce an important optimization in
addition to MBE. As already mentioned, the computation of a joint histogram with Br × Bm bins
is equivalent to the computation of a histogram of size Bj = BrBm.

Whether a kernel call processes a certain voxel pair, depends on the intensity values of the
voxels in Ir and Im. Often already the intensity value in Ir rules out a consideration for this
voxel pair in this kernel call. Therefore the texture lookup in Im needs to be skipped to avoid
unnecessary and expensive texture lookups and interpolations in the global memory.

Within the k-th kernel call (each kernel computes Bkernel bins) only combinations of intensity
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values are considered for which the following equation holds:

(k − 1)Bkernel ≤ Bm((Br − 1)Ir(x) + Im(ϕ(x))) < kBkernel (4.23)

By reformulation Eq. 4.23 and the fact that 0.0 ≤ Im(ϕ(x)) ≤ 1.0 we get

(k − 1)Bkernel − Bm ≤ Bm(Br − 1)Ir(x) < kBkernel . (4.24)

If Eq. 4.24 is not true for a Ir(x), the texture lookup of Im(ϕ(x)) is skipped.

Since Method1 optimized by MBE & BC is showing the best performance it is most suitable
for our purposes. Even if we will investigate the performance obtained with MBE & STL in
Chapter 5, we will solely employ MBE & BC in our registration pipeline.

At this point we mention that we also published the results that were described in this section
in [Led10].
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4.4 Nonrigid Registration Pipeline

To this point of the thesis we have introduced all major methods and building blocks. Now, we
can assemble these building blocks to a complete nonrigid registration pipeline, which will be
presented in the following.

A rough overview over the essential parts of the registration algorithm, which were all im-
plemented in CUDA, is given in Figure 4.4.

Pyramid Construction

init/expand deformation
fields for this level

save current 
deformation fields

apply deformation fields

compute similarity measure

compute force fields

regularization (Gaussian)

update deformation fields

Iterations on 
this pyramid level

loop over 
all pyramid 
levels

on GPU

Figure 4.4: Schematic flowchart of nonrigid registration pipeline with important building blocks
implemented on GPU.

In a first step the images are read from binary files, where each voxel is stored in 2 bytes with
2 bits precision. A corresponding xml configuration file provides information about the dataset
and the acquisition geometry. This geometry is very important since the registration needs to be
done in the world coordinate system (CSYS), while the data is stored in a data structure addressed
in the voxel coordinate system.
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Coordinate Systems

Image data resides in arrays that are either stored as cudaPitchedPtr which can be linearly
addressed or stored as cudaArray which can be bound to a texture and allows for fast trilin-
ear interpolation. For a given 3D coordinate (x, y, z) we find the linear array index as i =

z ·#columns ·#rows + y ·#columns + x, where x indexes the column, y the row and z the
slice of the volume. This is considered as our voxel coordinate system. In order to consider the
real geometry during the acquisition, we need a map between this coordinate system and the so-
called world coordinate system. In the world coordinate system the euclidean distance between
coordinate vectors is equivalent to the distance of these points during the acquisition in mm.

x

y

z

model matrix: M

x_w [mm]

y_w [mm]

z_w [mm]

voxel CSYS world CSYS

x
y

z

Figure 4.5: Coordinate Transformation between voxel CSYS and world CSYS.

We call the map between the voxel and world coordinate system model matrix M . Figure 4.5
shows a schematic presentation of the two coordinate systems. M is constructed by the infor-
mation given in the configuration file. This file contains the translation of the origin in mm
(PatientPositionxyz as txyz), the diameter of a pixel in mm (PixelSpacingxyz as ∆xyz) and
two normalized basis vectors of the world coordinate system (PatientOrientation as vxyz).
By computing the third basis vector v3 of the two given orthonormal basis vectors as v3 = v1×v2
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we can compute the model matrix M as

M =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1


︸ ︷︷ ︸

T


v1x v2x v3x 0

v1y v2y v3y 0

v1z v2z v3z 0

0 0 0 1


︸ ︷︷ ︸

R


∆x 0 0 0

0 ∆y 0 0

0 0 ∆z 0

0 0 0 1


︸ ︷︷ ︸

S

(4.25)

where T is the transformation, R the rotation and S the scaling matrix. The whole registration
process is performed in the common world coordinate system. This coordinate system provides
meaningful distances, angles and orientations.

Multiresolution Pyramid

In a next step the image data is copied from host to device memory and a multiresolution pyramid
is created for each image. We emphasize that this is the only time where data is transferred from
host to device memory. The whole registration process is implemented on GPU using device
memory.

The original image is the bottom of our pyramid. Higher pyramid levels are constructed by
subsequently reducing the resolution of the levels. Since the in-plane resolution (in x,y direction)
is often significantly higher than the number of slices we consider this ratio to decide whether
we reduce the resolution by 2 in all dimensions or just in-plane (x,y). Dependent whether the
resolution is reduced in-plane or not, we construct a so-called mean- or average-pyramid by av-
eraging over four or eight voxels.

Multiresolution techniques come with two major advantages:

1. Building the average over several voxels behaves like a low-pass filter. It reduces noise and
local extrema in the images. The resulting smoother cost function usually leads to more
robust, however less accurate, registration results and higher capture ranges.

2. Registration on images with decreased resolution allows for significantly faster registra-
tion times. Often a few comparatively expensive iterations on higher resolution levels are
sufficient to improve rough registration results obtained on lower resolutions to the desired
accuracy.
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Algorithm

Dependent on the configuration either the reference or the moving image is resampled by using
trilinear interpolation to the resolution of the other image. The model matrix of the resampled
volume needs to be adapted.

We start our algorithm on the highest pyramid level (lowest resolution) and initialize the dis-
placement field with 0, what is equivalent to ϕ = id. For subsequent pyramid levels we need to
expand the last displacement field of the preceding level. We employed a trilinear interpolation
scheme to evaluate the preceding displacement field of lower resolution.

According to the algorithm presented as Algorithm 3.45 we propagate the moving image g in
the k-th iteration by the most recent displacement field uk and obtain gk = g ◦ϕk = g ◦ (id+uk).

Dependent on the employed similarity measure, we then evaluate the cost functionalJSSD,JMI

or JLCC for our reference image f and the propagated template image gk. Within this step the
intensity comparison function Luk

(f(x), guk
, x) is computed for every integral voxel x ∈ Ω ac-

cording to the used metric. We refer to Eq. 3.16 (LSSD
uk

), 3.24 (LMI
uk

) and 3.40 (LLCC
uk

). While the
computation of LSSD

uk
is efficient and straight forward, the calculation of LMI

uk
and LLCC

uk
is compu-

tationally more expensive since it involves the computation of a joint histogram (MI) or several
Gaussian filtering steps (LCC).

With this intensity comparison function Luk
we can now easily compute the driving forces

of the registration process, which are given by ∇J = Luk
∇guk

. The differentiation of guk
is

approximated by central differences with a step size equivalent to the pixel spacing in the corre-
sponding direction of differentiation.

At the end of each iteration the displacement field needs to be updated. We can rewrite the
last line of Algorithm 3.45 in the following way

uk+1 = ϕk+1 − id = (id+ uk) ◦ (id+ ϵkνk)− id = ϵkνk + uk ◦ (id+ ϵkνk) (4.26)

and obtain for the update of the displacement field the relation

uk+1(x) = ϵkνk(x) + uk(x+ ϵkνk(x)) (4.27)

where we used trilinear interpolation to evaluate uk.



Chapter 5

Experimental Results

In order to classify this work, it is crucial to compare our implementation to existing solutions.
Since we have access to a highly optimized parallel CPU implementation of the nonrigid registra-
tion algorithm presented in Chapter 3, we can provide this comparism. However, before we focus
on the registration performance for practical nonrigid registration tasks in Section 5.3, we will
present our test systems in Section 5.1 and investigate the individual performance of important
building blocks in Section 5.2. We will close this chapter with statements on applied optimization
techniques in Section 5.4 and general remarks on potential improvements and limitations.

5.1 Test Setup

For the experiments we used two different systems that are shown in Tab. 5.1. While System
A is a wide-spread mid-range system with a dual core CPU and one of the first CUDA capable
graphics card with compute capability 1.0, System B is a higher performant system. System B
is equipped with 8 CPU cores and a Tesla C1060, which is a powerful graphics card dedicated
to high performance computations on the GPU. This equipment allows for high performance
registration on the CPU as well as on the GPU. By employing these two systems for practical
registration tasks, we are able to get an impression of what can be achieved on affordable mid-
range hardware as well as on more expensive systems that are in general not available.

We developed our CUDA registration framework on System A. This brings the huge advan-
tage that our code runs on any CUDA capable device and is not dependent on a certain compute
capability.

With one exception we used the same configuration (block and grid layout) for kernel launches

45
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Table 5.1: Test Systems
System A System B

CPU 2 Intel Xeon @ 3,2 GHz 2 Intel Xeon E5420 QuadCore @ 2,5 GHz
Memory 3 GB 3 GB
GPU NVIDIA GeForce 8800GTX 768 MB NVIDIA Tesla C1060 4096 MB

16 Multiprocessors 30 Multiprocessors
Compute Capability 1.0 Compute Capability 1.3

on both systems. As described in Section 4.3, each thread block in the implemented algorithm
for joint histogram computation utilizes the maximal 16 kB of available shared memory per mul-
tiprocessor. Thus not more than one block can run on a multiprocessor simultaneously. Because
of this we configured the number of blocks according to the number of multiprocessors that are
available on the corresponding test system.

We compiled our implementation with CUDA 3.1. As already noted, we developed our
project on System A. This is important to keep in mind since minor performance and configu-
ration optimizations might be useful on the GeForce 8800 GTX but useless or even disadvanta-
geous on the Tesla C1060 of System B.

We used a CPU timer to measure the runtime of our GPU implementations. In this context we
mention that many CUDA API functions are asynchronous. Thus the control might be returned
to the calling CPU thread before the GPU kernels completed their tasks. To measure the elapsed
time accurately we synchronized the CPU thread with the GPU immediately before starting and
stopping the CPU timer. This is done using the CUDA function cudaThreadSynchronize(), which
blocks the CPU thread until all GPU calls, which were started by this thread, are completed. For
more details on the time measurement of GPU calls we refer to [NVI10b].

Since runtimes are often beyond several milliseconds, we averaged the computation times
presented in Section 5.2 over 100 computations. Total registration times in Section 5.3 are aver-
aged over 3 computations.

5.2 Performance of Certain Building Blocks

We will now present performance results of the most significant building blocks of our nonrigid
registration pipeline which is based on the method introduced in Chapter 3 and described in
Section 4.4.
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As already mentioned, especially the Gaussian filtering is an often required tool. Not just for
regularization by smoothing deformation fields but also for the computation of local statistics,
provided that LCC is used. We will provide a detailed investigation of our parallel implementa-
tion of Deriche’s approach (as presented in Section 4.2) in Section 5.2.2.

In Section 5.2.3 we will then determine the impact of the three novel optimization techniques
on histogram computation, which we proposed in Section 4.3.

We mention that our CPU implementations, used in this section, run single threaded. How-
ever, the runtimes of the presented filtering techniques scale very well with the number of cores
that are used. All benchmarks in this section were run on System A which is shown in Tab. 5.1.

The error analysis, conducted in Section 5.2.2, of the implementation of the recursive filter
is based on the relative L1-error norm. For a scalar, non-zero reference value x and a scalar
approximation x̃, of this as true considered value, this norm is defined as |x−x̃|

|x| . We calculate
this error as |x−x̃|

|x| × 100% in percent. In error calculations we will always provide the minimal,
maximal and average L1-error.

5.2.1 Test Data

For the experiments in this section we generated test data of different resolutions, as follows:

HOMO DATA: A volume with a constant, homogeneous intensity value of 1.0.
RAND DATA: A volume with uniformly distributed random intensity values in [0.0; 1.0].
EDGE DATA: A volume having repetitive 5 consequent slices with an intensity value of 1.0

and 5 consequent slices with an intensity value of 1000.0. This creates regions
of constant intensity values separated by sharp edges.

SPIKED DATA: A volume created by modifying RAND DATA with equidistant spikes of an
intensity value of 1000.0. Spikes are created with a distance of 5 to each
other in each dimension.

Volumes in host memory are always stored in a 1D array of floats. As data structure on the device
we used either a cudaPitchedPtr, if no interpolation is needed (Filtering), or texture memory to
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allow for fast interpolation as it might be needed for the histogram computation.

In the experiments concerning joint histogram computation (Section 5.2.3) we also computed
histograms on real datasets which are shown in Table 5.2.

Table 5.2: Real Registration tasks (REG), reference (R) and moving (M) images
Task REG BRAIN

R BRAIN M BRAIN
Resolution 44× 512× 512 52× 256× 256
Modality CT MRI (T1)
Remark images of Vanderbilt database

5.2.2 Recursive Deriche Filter

In order to employ the recursive Gaussian filtering method presented in Section 4.2, we investi-
gate the accuracy as well as the runtime of our GPU implementation.

Accuracy

In the following we compare the output of our recursive implementation to the numerical results
obtained by a direct convolution with a Gaussian kernel with radius 10σ, where σ is the standard
deviation of the Gaussian. We investigate the behavior on four different artificially created data
sets of size 2563, which are described in Section 5.2.1.

The minimal, maximal and average L1-errors of the performed experiments are shown in
Figure 5.1. We observe that the accuracy of Deriche’s recursive filter decreases with increasing
σ on all data sets. This coincides with the results provided in [Hal06]. On HOMO DATA as
well as on RAND DATA we determine very low average and maximal relative L1-errors. Even
if these errors are increasing with σ, they stay in an order of 10−1 to 10−4%. This is entirely
sufficient for our applications. Errors on SPIKED DATA are increased by roughly one order
compared to the errors calculated on RAND DATA. For higher σ the relative L1-error reaches
several percent. Further experiments showed that this error is not directly influenced by the
“height” of the spikes in the data. The high relative L1-error on EDGE DATA for σ = 1 scales
with the ratio of the intensity values in the region with higher intensity values and the region with
lower intensity values. With an increased number of consequent slices with identical intensity
values, this behavior is observed for higher choices of σ as well. We are not worried about
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these results since we will not filter data like this nor use σ ≥ 20. However, we emphasize
that a relative L1-error of several percent might be of importance in other applications. For the
regularization there is also no theoretical need for an exact Gaussian filter.
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Figure 5.1: Relative L1-error of our parallel recursive Deriche filter compared to a direct convo-
lution with a Gaussian kernel with radius 10σ.

A more severe problem for our application is that numerical tests revealed that new minima
or maxima can be introduced to the image by applying the presented recursive filter. Even if the
extent of this problem is covered by the low maximal relative L1-errors, we need to be aware of
the possibility that this effect could result in a change of sign. Thus when filtering data with solely
positive values, there is a chance that negative values emerge in the filtered data. This is usually
nothing to worry about when the filter is employed as regularizer for the deformation field. But
when local variances are estimated by Gaussian convolution as described in Section 4.1, it needs
to be ensured that Varloc(X) ≥ 0. We encountered exactly this problem of negative variances,
while using LCC as similarity measure, and present two solutions. One possibility is to employ
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a GPU implementation of a direct convolution, which obeys this MAX/MIN property, instead of
the recursive filter. However, in order to benefit from the very fast and σ-independent recursive
filter, we suggest to take the absolute values of the values resulting from the filtering. To avoid
intra-warp branch divergence, caused by if-conditions, we realized this operation by computing
|x| =

√
x2. This has no observable influence on the performance of our GPU implementation.

With the consideration that |x−|x̃|| ≤ |x−x̃| ∀x ≥ 0, it is also obvious that the relative L1-error
is not increased by this operation. In the case x̃ < 0 this error is even reduced.

Runtime

After investigating the accuracy of the recursive filter we will in this paragraph focus on the run-
time of our implementation on System A.

In order to rate the results achieved with parallel solutions on the GPU, we compare our GPU
implementations of the recursive and direct convolution filter to equivalent CPU implementations
in a first test. In this test a kernel of half width 4σ is used for the direct convolution and the GPU
computation times include the time required to copy the test data from host to device memory
and vice versa. If Deriche’s approach is compared to a direct convolution, we can easily count the
theoretical necessary calculations to compute an output sample. As can be seen from Eq. 4.12
and Eq. 4.13, the computation of an output element by an 4-th order recursive filter requires, in-
dependent of σ, 16 multiplications and 15 additions for each dimension. In contrast to this 1+4σ

multiplications and 8σ additions are necessary, if a filter kernel of half width 4σ is used for direct
convolution. This relation can be roughly observed in Figure 5.2 for the CPU implementations,
where recursive filtering outperforms the direct convolution for σ ≥ 2 and performs almost inde-
pendent of σ. That even the computation time of the recursive filter increases slightly with σ, is
caused by the fact that every line of the volume is padded with max(5⌊σ + 0.5⌋, 10) elements to
impose boundary conditions, as described in Section 4.2.2. However, the computation times on
the GPU are influenced by other factors as well. For example the parallelizability of an algorithm
and possibility of efficient memory access is more important than the sole count of arithmetic
operations. Therefore these arithmetic considerations can not be applied to GPU programming
in a straightforward way. As we see in Figure 5.2 the GPU implementations outperform both
CPU implementations by far. The recursive GPU implementation performs, independent of σ,
around 40 times faster than its counterpart on the CPU. As also shown, the computational cost of
the parallel direct convolution on the GPU obviously depends on σ as well. However, compared
to the CPU version, we observe a much better scaling of the runtime for direct convolution with
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Figure 5.2: Comparism of runtimes for Direct Convolution and Deriche Filtering on System A.
Volume size: 1283

Figure 5.3: CUDA Visual Profiler Analysis for Deriche Filtering on System A. Volume size:
2563

increasing σ on the GPU. We notice a 14 (σ = 1) to 88 (σ = 30) times faster direct convolution
on the GPU. The parallel recursive filtering approach on GPU outperforms its counterpart on
the CPU by a factor of roughly 40. The changing speed up factor for the comparison of direct
convolution is explained by the fact that the two expensive tasks of the GPU implementation are
constant and independent of σ. These tasks are to copy data between host and device memory
and between global and shared memory. To copy 1283 × 4 bytes data from host to device and
vice versa takes for example approximately 16 ms. This is especially for the very fast recursive
filtering significant, since the overall time for the recursive GPU approach was 24 ms, which is
just slightly more. Neglecting the time needed to transfer data between host and device memory,
the GPU implementation of the recursive filter outperforms its equivalent CPU implementation
by a factor of at least 100.

As shown in Figure 5.3, which is an output diagram of the CUDA Visual Profiler for the
recursive filtering, transferring data between host and device memory is very expensive in terms
of runtime. In the illustrated example the time to copy 2563×4 bytes data is with 128,7 ms more
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than 2 times higher than the required time for the actual filtering with 59,9 ms. We also see the
importance of coalesced global loads (gld) and global stores (gst). As described in Section 4.2.2,
we can realize coalesced memory access just for two filtering directions. Filtering in column
direction requires expensive uncoalesced access to global memory, what results in a slow down
factor of roughly 8 in this example.

Compiled with CUDA 3.1 our kernel is using 16 registers which yields a good occupancy of
0.666/1 on System A/B. We refer to [NVI10b] for more information about these characteristic
parameters. As shown in the kernel summaries in Appendix B, our implementation yields an
overall memory throughput of around 20 GB/s on System B which equals 20% of the theoretical
possible (102 GB/s) throughput of the Tesla C1060 GPU. However, we recap that we optimized
our implementation on System A. Employing optimizations which are specific for System B
should allow for a more efficient filtering on System B. Apparently the higher occupancy on
System B is disadvantageous for this kernel. Different general optimization approaches as em-
ploying shared memory failed, since all of them resulted in an implementation which was inflated
by algorithmic overhead.

In Figure 5.4 the performance of both GPU implementations are opposed for different volume
sizes and different choices of σ. To avoid comparing the computational overhead introduced by
transferring data, we will now benchmark the filtering time for data residing in device memory.
This is also reasonable, since there is no need to copy data between host and device memory in
the presented registration pipeline.

Compared to the direct convolution, the recursive implementation performs faster for any
choice of σ and any volume size. Nevertheless, it scales much better with increasing sidelenghts
and especially σ, where the computation time is constant. For small sizes (sidelength < 64) and
σ = 1.0 both approaches perform similar. The recursive approach performs up to 13 times faster
for the largest tested volume (2563) and σ (30.0). Even for small choices of σ it performs in
general noticeably faster.

The rapid increase of computation time using direct convolution for certain image sizes is
caused by the fact, that the block and thread configuration of the CUDA kernel depends on the
image size. Since we focus on and employ the recursive implementation, which behaves well
for increasing image sizes, we are not worried about this observation. However, it shows the
potential dramatic influence of the kernel configuration on the computation time.

All conducted experiments lead to the conclusion that the in Section 4.2.2 presented 4-th
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Figure 5.4: Comparism of runtimes for Direct Convolution and Deriche Filter on System A.

order recursive filter according to Deriche [Der93] is especially when implemented in CUDA a
very powerful tool. We showed that this filter is, with some modifications for the computation of
running averages, suitable for all our filtering purposes.

5.2.3 Joint Histogram Computation

We will conduct performance experiments from two different view points in this section. In the
first part we will focus on the comparison of joint histogram computation on the CPU and on the
GPU. Later on we will investigate the relevance of the novel optimization techniques, which we
introduced in Section 4.3.

First of all we will compare joint histogram computation on the CPU to our highly opti-
mized implementation on GPU. For the GPU implementation we employed the histogram algo-
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Figure 5.5: Comparism of runtimes for Histogram Computation on System A.

rithm, which was presented in Section 4.3.2 and enhanced by two complementary optimization
techniques. These optimizations were presented as MBE and BC in Section 4.3.3. The CPU
implementation is straightforward.

We compared computation times for a joint histogram calculation on two volumes of size
1283 initialized according to RAND DATA. Neither an interpolation scheme nor any transfor-
mation to the moving image was applied in these calculations. Since in our pipeline the moving
volume is warped before the joint histogram is actually computed, this is exactly how we em-
ployed this building block for the computation of MI. The CPU and GPU computation times are
compared in Figure 5.5, whereby the measured GPU time includes the required transfer time to
copy both images from host to device memory. Even if the GPU implementation has an overhead
of 17.0/131.9 ms to copy two volumes of size 1283/2563 from host to device memory, we observe
a significant speedup of factor 2 for reasonable histogram sizes of 100× 100. In our registration
process the overhead caused by data transfer is redundant. Thus we will notice a speed up factor
of roughly 5, for reasonable joint histogram sizes, in our application for this building block. Also
for large bin numbers of 250 bins for each image the GPU implementation is faster.

We point out, that in all performed experiments the parallel GPU implementation yields
within the limits of rounding errors the same joint histograms as the CPU implementation.

In the following we focus on the impact of the optimization techniques which we presented in
Section 4.3.3. For this purpose we slightly broaden the scope. We will now employ interpolation
schemes and apply affine transformations to the moving image. Even if this is in general not
necessary in the presented nonrigid registration pipeline, these results are for example within
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the process of rigid preregistration of high interest. We will provide a comparison based on the
runtimes of one of the fastest published joint histograms algorithms, which was presented as
Method1 in [Sha07b]. On the one hand side we will measure runtimes of this algorithm itself
and on the other hand we will time this algorithm enhanced by the presented optimizations. We
will also differentiate whether spare global memory is available or not.

If global memory is not a limiting factor, we can facilitate a fast histogram computation by
applying Method1 to a new temporary image Ic(ϕ(·), x) (Eq. 4.22). This image is generated in a
preprocessing step according to Eq. 4.22. In this case (I) we will compare Method1 to Method1

enhanced by applying the optimizations MBE and BC, where both approaches require additional
memory. In Section 4.3.3 we already pointed out that for joint histograms of sizes ≤ 256× 256

bins, our proposed optimization BC saves 50% of the additionally required memory compared
to the regular preprocessing step according to Eq. 4.22.

If global memory is short, which might occur when dealing with large volume sizes (2563 ×
4 Byte = 64 MB, 5123 × 4 Byte = 512 MB), histogram computation can neither be accelerated
by creating a temporary image as shown in Eq. 4.22 nor by applying BC. Even 50% of an
image size might be too much to ask for additional memory. In this case (II) we compare the
unoptimized implementation of Method1, which is evaluating both images to obtain Ic within
each kernel call, to Method1 optimized by MBE and STL.

In general this entails, in order to get the resulting joint histogram bin of a voxel pair, that two
images need to be evaluated within each kernel call. This includes the application of a transfor-
mation to the moving image as well as the employment of more or less expensive interpolation
schemes. All these tasks need to be performed only once, if the result can be cached in additional
memory. Therefore additional memory is highly desirable for a fast histogram computation.

We calculate MI in three steps: joint histogram computation, normalization of the histogram
(
∑

i,j J(i, j) = 1) and the actual computation of MI. For the computation of the marginal en-
tropies H(X) and H(Y ) an adapted implementation of NVIDIA’s high efficient reduction al-
gorithm [Har07] is employed. The normalization together with the computation of MI takes
0.19/0.14 ms (on System A/B resp.) for a joint histogram with 100 × 100 bins. This cost is
negligible compared to the joint histogram calculation.

Experiments on REG DATA revealed that for bin ranges above 140 × 140 the optimized
algorithm with tricubic interpolation is faster than the unoptimized algorithm with trilinear in-
terpolation (if additional memory is available). This could allow for a more accurate registration
by using higher-order interpolation schemes while keeping computation times reasonable.
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Figure 5.6: Mutual Information computation times using different methods on REG BRAIN
without (left) and with (right) additional memory available on System A.

Figure 5.6 illustrates the improvements achieved with the presented optimizations for differ-
ent bin numbers on the REG BRAIN dataset.

Both implementations, which are not using additional memory and are illustrated in the left
diagram, perform clearly slower than the ones using additional memory. Nevertheless our pre-
sented optimizations contribute significantly to a fast MI computation. MBE combined with, de-
pendent on the availability of global memory, STL or BC outperforms the unoptimized Method1

for all investigated scenarios considerably.

See also Tab. 5.3 for an overview over the resulting average reduction in computation times
on System A and B.

Table 5.3: Comparison of MI computation times with optimized/unoptimized algorithms on
RAND DATA/HOMO DATA and realistic REG BRAIN datasets. Average computation time
reduction on System A/B. Joint histogram size: bins×bins, Transformation: affine

MBE & BC, (I) MBE & STL, (II)
(trilinear) (tricubic) (trilinear) (tricubic)

side length of volumes: 256
19.2/24.4% 15.4/28.5% 28.8/28.6% 40.9/41.9%

bins: 10 to 250, RAND DATA
side length of volumes: 16 to 256

19.8/21.7% 14.1/24.1% 35.1/32.8% 44.7/43.5%
bins: 100, RAND DATA
side length of volumes: 16 to 256

10.9/13.6% 10.7/19.6% 33.0/31.6% 53.0/52.1%
bins: 100, HOMO DATA
REG BRAIN datasets

17.3/22.7% 16.0/28.3% 31.4/30.9% 45.9/46.6%
bins: 10 to 250
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We point out, that we observed a significant reduction in runtime not just for generated ar-
tificial data, but especially for the realistic REG BRAIN datasets of the Vanderbilt database
[Wes97].

Regarding MBE, due to algorithmic overhead and more frequent global memory updates to
avoid overflows, no further performance improvements were observed by encoding more than
two bins in the 27 less significant bits.

The conducted performance experiments reveal that CUDA allows for a significant faster
histogram computation on the GPU than on the CPU. We demonstrated that for our application
a speed up of factor 5 for joint histogram computation can be expected. This is achieved by opti-
mizing a recent joint histogram algorithm (Method1 in [Sha07b]) by applying novel optimization
techniques (MBE & BC), which we introduced in Section 4.3.3.

With this highly optimized joint histogram computation, we have an accurate and very fast
implementation in place to compute joint histograms. Histogram computation is a crucial and
time consuming building block, if we employ MI as similarity measure.
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5.3 Registration Performance

In this section we will investigate the overall performance of the presented registration pipeline
realized in parallel on the GPU compared to a parallel CPU implementation using all available
cores on the respective test system. For the conducted performance experiments we employed
common and identical (on CPU and GPU) iteration schemes to tackle different registration tasks,
which are shown in Tab. 5.4.

Table 5.4: Registration tasks (REG), reference (R) and moving (M) images
Task REG HEAD REG LUNG128 REG LUNG256

R HEAD M HEAD R/M LUNG128 R/M LUNG256
Resolution 49× 512× 512 52× 256× 256 128× 128× 128 256× 256× 256
Modality CT MRI (T2) CT CT
Patient different same
Remark images of Vanderbilt database lung in inspiration/expiration (R/M)

Since objective error evaluation is a very challenging task for nonrigid registration problems
[Cru03], we restrict the scope of this thesis to the analysis of computation times and visual reg-
istration results.

We will oppose overall registration times on the GPU/CPU obtained on our test systems (Tab.
5.1) for different configurations. We employed the recursive Deriche filter as presented in Section
4.2.2 for the regularization and the estimation of local statistics. Joint histograms, required for
the calculation of MI, are computed by an improved implementation of an algorithm (Method1)
of Shams et al. [Sha07b], which we presented in Section 4.3.2. We optimized this algorithm by
two essential optimization techniques, which were introduced as MBE and BC in Section 4.3.3.

First of all we will compare overall registration times and average iteration times on different
pyramid levels in Section 5.3.1. Next to this we will investigate the contribution of different
building blocks to the overall process by analyzing the runtime of different CUDA kernels in
Section 5.3.2. How many iterations are actually required to obtain desirable registration results
is data and application dependent. We will show in Section 5.3.3 that often just a few iterations on
lower pyramid levels can be sufficient to recover significant misalignments. A memory footprint
of our algorithm is given in Section 5.3.4.
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5.3.1 Performance on Real Data

In order to compare computation times of all presented similarity measures (SSD, MI and LCC)
we investigate runtimes on the monomodal REG LUNG256 registration task, which can be found
in Tab. 5.4, where all similarity measures lead to reasonable registration results. We will present
results for both test systems. As investigated in Section 5.3.4, the memory requirement of the
algorithm depends on the input data and the iteration scheme. Because of this limitation no it-
erations can be performed on the highest resolution level for REG LUNG256 on System A. We
registered this dataset by using iteration scheme [64,32,16,8,0] on System A and [64,32,16,8,4]
on System B. This means 64 iterations on resolution 163, 32 iterations on resolution 323, 16
iterations on 643, 8 iterations on 1283 and 0 or 4 iterations on the full resolution 2563. The
registration results highly depend on the iteration schemes and on the characteristics of the em-
ployed filters. The standard deviations of the Gaussian filter used for the regularization (σ) and
for the estimation of local statistics (β) are crucial parameters. However, since the runtime of
our recursive implementation according to Deriche is independent of the standard deviation, the
overall registration time with a certain iteration scheme does not depend on the choice of these
parameters.

Figure 5.7 shows the visual registration results achieved with LCC and β = 1.0 for the
estimation of local statistics. While the alignment of tissue and the ribs looks quite reasonable
we notice an extension of the spine. This can be tackled by for example shifting iterations from
lower to higher resolution levels. However, the registration of other significant landmarks might
suffer with a changing iteration scheme. The choice of parameters is usually done intuitively and
by trying different settings. We did not optimize these parameters explicitly for the presented
registration tasks. We set the regularization parameter σ = 2.0 for all similarity measures. The
registration results on this monomodal dataset look similar for all three similarity measures. For
the computation of MI we used 80× 80 bins.

In Tab. 5.5 we compared the CPU to the GPU implementation on System A and in Tab. 5.6
respectively for System B.

The time noted as “pyramid construction” includes the time needed to transfer the reference
and moving image to the device memory. However, the time to load the images from the hard
drive to host memory and save the deformation fields on it is not included. We emphasize that
we observed for any setting significant reductions in registration times by a factor from approx-
imately 5 on System B to 10 on System A. The lower speed up factor observed on System B
is mainly caused by the fact that the CPU of System B has 4 times as many cores than System
A, while the Tesla C1060 has “only” twice as many multiprocessors as the GeForce 8800 GTX
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and might also suffer from memory limitations. Again we point out that these total registration
times include all data transfers between host and device memory and represent thus the actual
computation times needed to obtain the three resulting deformation fields in host memory.

We regard the encountered speed up factors of up to one order compared to high performant
parallel CPU implementations as vast. Especially the fact that even the low-end GeForce 8800
GTX outperforms the 8 core CPU of System B clearly by a factor of roughly 3 needs to be
emphasized.

Figure 5.7: Nonrigid Registration Results achieved with LCC on REG LUNG256 and iteration
scheme [64,32,16,8,4] on System B. Upper row: unregistered. Lower row: registered. From left
to right: view on axial, coronal, sagittal plane.



5.3. REGISTRATION PERFORMANCE 61

Table 5.5: Comparison of nonrigid registration times for REG LUNG256 on System A. Time
for pyramid construction for both images [ms]. Average iteration times on each pyramid level
[ms]. Time to transfer 3 deformation fields of size 2563 from device to host memory.

CPU A GPU A
SSD MI LCC SSD MI LCC

pyramid construction [ms] 108 132
avg. iteration time on 163 [ms] 3 5 6 1 2 2
avg. iteration time on 323 [ms] 21 23 35 2 3 4
avg. iteration time on 643 [ms] 152 182 235 8 11 16
avg. iteration time on 1283 [ms] 1154 1378 1837 46 52 103
avg. iteration time on 2563 [ms] – – – – – –
transfer of 3 def. fields (2563) [ms] 0 292
total reg. time with [64,32,16,8,0] 17.02s 19.77s 24.41s 1.69s 1.78s 2.33s

Table 5.6: Comparison of nonrigid registration times for REG LUNG256 on System B. Time for
pyramid construction for both images [ms]. Average iteration times on each pyramid level [ms].
Time to transfer 3 deformation fields of size 2563 from device to host memory.

CPU B GPU B
SSD MI LCC SSD MI LCC

pyramid construction [ms] 32 76
avg. iteration time on 163 [ms] 1 2 3 1 1 1
avg. iteration time on 323 [ms] 6 8 13 1 3 3
avg. iteration time on 643 [ms] 40 47 73 6 7 12
avg. iteration time on 1283 [ms] 282 351 532 35 43 87
avg. iteration time on 2563 [ms] 2211 2828 4185 367 399 1042
transfer of 3 def. fields (2563) [ms] 0 182
total reg. time with [64,32,16,8,4] 13.77s 17.10s 24.58s 2.57s 2.88s 5.92s
total reg. time with [64,32,16,8,0] 4.90s 5.65s 7.89s 1.13s 1.24s 1.79s
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5.3.2 CUDA Visual Profiler Analysis

The visual profiler tool which comes with the CUDA Toolkit is a very powerful tool to investigate
the contribution of single CUDA kernels to the overall runtime. We show these profiler results
for the most contributing kernels for SSD, MI and LCC in Figure 5.8. The applied iteration
scheme [64,32,16,8,4] results in 124 iterations in this experiment on System B.

Independent of the employed metric the deformation fields need to be regularized by applying
the in Section 4.2 presented recursive filter. This filtering is with a contribution of more than 50%
clearly the dominating factor in terms of computation time. If LCC is employed as similarity
criterion, a Gaussian is used to estimate local statistics and the contribution of the Deriche filter
is with 80% even higher.

All three footprints also reveal a significant contribution of the DeviceToArray copy. This
transfer between global and texture memory is necessary since there is no write access to texture
memory. Each time texture memory needs to be modified this copy process is performed. We
refer to Section 5.4 for a further explanation of this effect.

In case of MI, the importance of an efficient joint histogram computation shows up. In
the corresponding diagram in Figure 5.8 we see that the kernel JointHistogramKernel is called
5 times in each iteration, resulting in 620 total invocations, to compute subsequently the full
joint histogram of size 80 × 80 bins. Even if this task is computationally complex the applied
optimizations push the contribution of this kernel below 10%.

Overall these profiler outputs emphasize the importance of optimizing Deriche filtering and
joint histogram computation. In this thesis we investigated the efficient realization of both build-
ing blocks.

We point out that the contribution of other kernels to the overall registration time is of mi-
nor relevance while filtering is particularly dominant in terms of computation time. In order to
reduce runtimes, the focus should first of all be on optimizing the recursive filter. Since our im-
plementations and configurations were optimized for System A the filtering on System B could
be further accelerated by applying different optimizations which are specific for System B.

A more detailed summary of all participating CUDA kernels, which is also showing the
global memory throughput, can be found for each similarity measure in Appendix B.
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Figure 5.8: CUDA Visual Profiler Analysis for the nonrigid registration pipeline using (from top)
SSD, MI and LCC on System B. Volume size: 2563
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5.3.3 Real Time Registration

Within real-time constraints, as they arise in interventional applications, registration time might
be more relevant than good accuracy on a dataset of high resolution. Often truncated iteration
schemes applied to data of lower resolution provide sufficient registration results.

We investigated the possibility of real-time registration by using the reduced iteration scheme
[32,16,8,0] on the lung datasets REG LUNG128 of a reduced resolution of 1283.

The visual results, which look rather satisfying and were obtained with SSD as similarity
measure, are shown in Figure 5.9. The computation times for different similarity criterions
measured on both test systems are compared in Tab. 5.7. Again we encountered a significantly
accelerated registration process on both systems. Interesting in this context is again the fact
that the low-end GeForce 8800 GTX in System A outperforms the two QuadCore processors
in System B clearly. We also mention that registration times are limited downward by the time
needed to transfer data between host and device memory and initializing the CUDA drivers
(≈ 100 ms). Taking into account that these processes might not be necessary for subsequent
registration tasks, online and real-time registration with a few frames per second is accessible.

Figure 5.9: Nonrigid registration results achieved with SSD on REG LUNG128 and iteration
scheme [32,16,8,0] on System B. Upper row: unregistered. Lower row: registered. From left to
right: view on axial, coronal, sagittal plane.
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Table 5.7: Comparison of nonrigid registration times for REG LUNG128 on System A and B.
CPU GPU

SSD MI LCC SSD MI LCC
total reg. time with [32,16,8,0] on System A 2.42s 2.90s 3.47s 0.52s 0.63s 0.69s
total reg. time with [32,16,8,0] on System B 0.82s 0.92s 1.26s 0.33s 0.38s 0.47s

5.3.4 Memory Footprint

Available memory on the graphics card can be a limiting factor for our registration algorithm.
Instead of providing a detailed analysis we restrict ourself to the practical relevant overall maxi-
mal memory requirement for certain registration tasks. The memory demand for different tasks
of different resolutions is shown in Tab. 5.8. In this summary we can see immediately why
REG LUNG256 can not be registered on System A using iterations on the pyramid level of
highest resolution. With 768 MB the memory of the GeForce 8800 GTX is insufficient. The
actual demand depends on the resolution of the registered images and the employed similarity
metric. We can register high-resolution data even if memory is short by neglecting iterations on
high pyramid levels. This is shown in the last row of Tab. 5.8 where no iterations are performed
on the 2563 level. We mention that the actual memory demand can be roughly computed as 13
image sizes. At the highest pyramid level we need to store 2 images, 1 warped image, 3 defor-
mation fields, 3 force fields, 1 intensity comparison function and another 3 temporary fields for
intermediate computations in the device memory.

Table 5.8: Memory demand in MB for SSD, LCC and MI for registration tasks of different
resolutions.

Size of reference image SSD & MI LCC
128× 128× 128 (8 MB) 108 116
192× 192× 144 (20 MB) 274 294
256× 256× 107 (27 MB) 375 402
256× 256× 256 (64 MB) 865 930
no iterations on highest level 481 481
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5.3.5 Multimodal Registration

We registered the multimodal dataset REG HEAD as shown in Tab. 5.4 to illustrate the dif-
ference, possibilities and also limitations of the presented similarity measures in a multimodal
case. While SSD clearly fails, LCC and especially MI leads to visually better results. Again, the
results depend directly on the registration parameters, which were not optimized for this dataset.
The presented case is mainly constructed for validation purposes and to show the functionality
of our registration pipeline. However, tasks like this might appear in a similar setup for atlas
construction.

Figure 5.10: Nonrigid registration results achieved with SSD, MI and LCC on REG HEAD
and iteration scheme [30,30,30,30] on System A. From left to right and top to bottom: Rigid
preregistered, nonrigid SSD, nonrigid MI, nonrigid LCC.
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5.4 Discussion of Optimization and Performance Aspects

Throughout our implementations we obeyed important “high-priority” optimization strategies as
presented in [NVI10b]. Whenever possible we attempted to employ the fast shared memory and
reduced global memory access to a minimum. Furthermore we placed value on the occupation
of the multiprocessors with sufficient threads and avoided branch divergence, whenever possible.

Before the actual registration process can be started, the reference and moving volume are
copied from host to device memory. Since both images are stored as binary files having 2 bytes
per voxel this procedure is rather fast compared to the transfer of the deformation fields, which
are copied from device to host memory after the registration algorithm has finished. These three
resulting scalar deformation fields (one for each dimension) are stored with 4 byte floating point
precision and have the same dimension as the moving image. During the whole registration
process, there is no significant data transfer between host and device memory. Exceptions are
scalar values as for example the evaluation of a cost function during an iteration.

Figure 5.11 (left diagram) illustrates the required time to copy data between cudaArrays and
host memory on System A. We emphasize that this host-device data transfer is a significantly
contributing factor to the overall runtime of the registration process. This transfer takes for ex-
ample for the three resulting deformation fields of size 2563 more than 200 ms on System A.

Even if data transfer between a cudaPitchedPtr and a cudaArray on the device itself is less
time consuming, it contributes as already mentioned in Section 5.3.1 to the overall registration
time significantly. The required time for this data transfer is shown in the right diagram of Figure
5.11. Since it is not possible to perform write operations on texture memory, a reinitialization of
this memory is performed each time texture memory needs to be modified. In our implementation
we employ this copy at least 5 times in each iteration. By applying the current deformation fields
to the moving volume we create the current warped volume in each iteration. Finally we modify
the three deformation fields at the end of each iteration. Because of the fact that we want to
benefit from a fast trilinear interpolation in the warped image and in the deformation fields the
use of texture memory is essential at this point. Caused by the design of our pipeline, we also
employed texture memory to store the values of the intensity comparison function.

We computed a throughput for the data transfer between device and texture memory of
roughly 3.5 GB/s on System A, which is one order slower than using a CUDA kernel to copy
between two device arrays. This is poor compared to the theoretical bandwidth of 86.4 GB/s and
a known bottleneck. Improvements with upcoming CUDA versions are of high interest.
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Figure 5.11: Required time to transfer data between host memory and cudaArrays (left) and
cudaPitchedPtr and cudaArrays (right) on System A.

At this point we share another experience that we made during the development and the con-
ducted experiments. We observed that the performance of a certain kernel is highly dependent
on the configuration. How many blocks and threads can actual run in parallel on one multipro-
cessor depends on limitations imposed by a variety of parameters. Most important in this context
are for example the compute capability of the device and kernel dependent parameters as the
threads per block, the registers per thread and the amount of shared memory used by each block.
These characteristics depend partly on the device (compute capability) and partly on the kernel
launch configuration (threads per block). Taking into account that different CUDA compiler
versions yield different register counts for one and the same kernel, the runtime behavior might
also change significantly with different CUDA versions. A very helpful tool for this optimiza-
tion process is available with the “CUDA Occupancy Calculator”, which can be found on the
NVIDIA website [NVI10a]. For more technical background on the optimization of CUDA ker-
nels we refer to the NVIDIA CUDA Programming [NVI10c] and Best Practices [NVI10b] Guide.

In Section 5.3 we have shown that filtering and joint histogram computation are next to data
transfers the most time consuming tasks in the presented registration pipeline. This is why we
presented efficient approaches for these operations in Section 4.2 and 4.3 and investigated the
suitability of these building blocks thoroughly in Section 5.2. As shown in Section 5.3.2 the
runtime of all other kernels is of minor importance in terms of overall runtime. By employing
parallel commodity GPU hardware, we observed a vastly accelerated registration by a factor of
up to 10 compared to parallel CPU implementations.



Chapter 6

Extended and Future Work

Within this work we also implemented and tested different filtering techniques and interpolation
schemes. The scope of this document does not allow to present all these results in detail. How-
ever, we want to provide first and rough results for an edge presenting filtering approach and
a tricubic interpolation scheme. Next to this we will present a new similarity criterion, which
needs to be investigated in the future. We will start this section with general starting points for
future research and engineering.

6.1 General Starting Points

As already mentioned we developed and optimized the employed kernels on System A. Optimiz-
ing our implementation for the higher compute capability on System B should result in a further
decrease in computation time on the Tesla C1060 graphics card. We raised the subject of device
(compute capability) and environment (CUDA version) specific kernel optimization already in
Section 5.4. Optimizing the computationally most expensive kernels in this context is certainly
useful in terms of runtime but might be tricky in practice. Since the kernel configuration often
depends on the image size it is also important to ensure efficient computations for any given
sizes. This effect was shown in Figure 5.4 where the unoptimized Direct filter performs unrea-
sonably bad for certain image sizes. This also needs to be considered when kernels are optimized
for other systems.

Another general starting point for future research is to further investigate the realization of
the presented recursive filter according to Deriche. Even if the algorithmic instruction count
could be reduced by employing a recursive approximation of lower order, we think that not the
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instruction count but first of all the uncoalesced memory access is something to focus on. Es-
pecially the unused shared memory, which is a powerful feature of CUDA capable GPUs, could
enable innovative solutions. However, all of our approaches that were based on shared memory
yielded comparatively slow computation times. All our implementations utilizing shared mem-
ory suffered from algorithmic overhead or other throughput decreasing factors.

Also further optimizations of the pipeline itself and novelties available with more recent or
future GPUs are of interest. For example, for now local statistics of the reference image are es-
timated in every iteration. If memory is not a limiting factor this could be redundant by caching
these results. Next to this, potential improvements for the histogram computation enabled by
atomic updates, which are available with higher compute capabilities, need to be investigated.
Possibilities to speed up the slow transfer between global and texture memory are of particular
interest.

The profound validation of the registration accuracy is something that was missed out in this
work. However, in order to employ the presented pipeline in a clinical environment this is an
essential assignment which needs to be done in future work.

6.2 Tricubic B-Spline Interpolation

Since data can only be stored discretely on the computer system, the need of interpolation arises
whenever an image or deformation field is continuously evaluated.

In the presented algorithm this can be for example a crucial step when the deformation field is
applied to the moving volume or resampling is done. Since we can store the image and deforma-
tion field data in texture memory, we can in general choose whether to employ nearest-neighbor
or trilinear interpolation. In contrast to the CPU approach trilinear interpolation is hardwired
and therefore “free” on the GPU, which means that there is no notable performance difference
between these two interpolation schemes. However, trilinear interpolation might not be sufficient
to obtain a satisfying registration result. In these cases it is often a vast improvement to employ
tricubic interpolation instead [Par83].

As presented in [Rui08] or [The00] interpolation can be described in general as the evaluation
of the equation

f(x) =
∑
k∈Z

c(k)βn(x− k) (6.1)
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Figure 6.1: Computation time of B-spline coefficients for tricubic interpolation on System A.

where c(k) are the B-spline coefficients and βn is the B-spline basis of order n. We em-
phasize that only in the case of nearest-neighbor (n = 0) and linear interpolation (n = 1) the
coefficients c(k) coincide with the actual function values f(k). It is often presented differently
in literature as for example in [Sig05]. We refer to [The00] for more details on this issue. For
tricubic interpolation (n = 2) these coefficients need to be computed in a preprocessing step.
This calculation can be computed efficiently with a causal and non-causal filter similar to the
presentation in [Uns99]. Figure 6.1 provides the runtimes for this task on System A. Especially
for larger image sizes these additional computation times can be with over 100 ms significant.

Once these B-spline coefficients are calculated the tricubic interpolation itself can be done
quite efficiently on the GPU. Since the support of cubic B-splines is quite local (the width equals
4), we can evaluate Eq. 6.1 with 4N nearest-neighbor interpolations, where N is the dimension
of the image. However, with the method presented in [Sig05] we can replace this by a weighted
combination of 2N linear interpolations. Following this consideration we can for N = 3 use 8
trilinear interpolations, which are “free” on the GPU, instead of 64 nearest-neighbor interpola-
tions to evaluate Eq. 6.1. We reference to [Sig05] or [Rui08] for more details on this concept.
Because of the efficient trilinear interpolation on GPUs, a CUDA implemented registration algo-
rithm will outperform CPU implemented equivalents more significantly if tricubic interpolation
is employed.
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We point out that, if tricubic interpolation is used throughout the whole registration process,
the prefiltering to obtain the B-spline coefficients needs to be done once for the reference but in
every iteration for the warped moving volume and the deformation fields. Also the evaluation of
Eq. 6.1 is computationally more expensive than a single texture lookup. The overall registration
time might thus increase significantly compared to trilinear interpolation. However higher-order
interpolation schemes could be the key to obtain higher registration accuracy or to avoid artifacts.

The investigation of registration results, a detailed runtime comparison and optimization of
tricubic interpolation in this context should be part of future work.

6.3 Regularization with Nonlinear Diffusion Filtering

The regularizer of the presented registration method does not take structures or different types
of tissue into account, since the regularization is done globally with a Gaussian filter. Thus rigid
structures as for example bones may be transformed in a nonrigid manner, while growth to tu-
mors is concealed [Sta07]. One approach to restrict deformations to regions of similar tissue
type, and therefore usually similar intensity values, is to employ nonlinear diffusion filters. In
contrast to linear diffusion filtering, which is equivalent to a convolution with a Gaussian kernel,
nonlinear diffusion filters preserve or even enhance edges in an image. In practice this means that
deformation fields can be locally regularized by a diffusion filter, which is related to the tissue
stiffness. Therefore filtering is amplified in areas of similar tissue type as for example an organ,
while filtering is reduced across borders of different regions. The main reason to not use these
nonlinear filters is the high computationally cost. A very efficient and reliable scheme, based on
additive operator splitting (AOS), is presented in [Wei98].

We implemented this AOS scheme parallelized in CUDA and will provide the achieved com-
putation results as motivation for further work. However, we will restrict the presentation of
theoretical background of this nonlinear filter to the most essential parts and refer to the litera-
ture provided in [Wei98] for more details.

Let Ω be the domain of our image f : Ω 7→ R with x ∈ Ω. In the following we consider the
m-dimensional filter introduced in [Cat92] which calculates a filtered image u(x, t) of our initial
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image f(x) as the solution of the diffusion equation

∂tu = div
(
g(|∇uσ|2)∇u

)
=

m∑
l=1

∂xl

(
g(|∇uσ|2)∂xl

u
)

(6.2)

with initial state u(x, 0) = f(x) and Neumann boundary conditions. We used the diffusion
function g : R 7→ R, which is found in [Wei98] and defined as

g(s) =

{
1, if s ≤ 0

1− exp(−3.315
(s/λ)4

), otherwise
. (6.3)

Considering t as the so-called scale parameter, the original image f is embedded into a scale-
space [Wei98]. Compared to the well known Perona and Malik filter [Per90], this filter depends
on the magnitude of the gradient |∇uσ| of a smoothed image uσ = Gσ ⋆ u, where Gσ is a
Gaussian with standard deviation σ. This Gaussian filtering of u tackles the sensitivity to noise
of the Perona and Malik filter. The behavior of the edge detector g is controlled by the diffusion
parameter λ.

In order to solve Eq. 6.2 we can discretize it by central differences and obtain a semi-implicit
scheme in the form

uk+1 =

(
i− τ

m∑
l=1

Al(uk)

)−1

uk (6.4)

which can be modified to the so-called AOS scheme

uk+1 =
1

m

m∑
l=1

(I −mτAl(uk))
−1 uk . (6.5)

The coefficients in the matrix Al(uk) follow from the discretization and can be found in [Wei98].
It turns out that the operators Bl(u

k) = I − mτAl(uk) are tridiagonal and strictly diagonal
dominant. Therefore each operator Bl(u

k) can be inverted in a very efficient and stable way by
computing the LR decomposition of this matrix followed by a forward and backward substitu-
tion. Again we refer to [Wei98] where this algorithm is described in detail and where is shown
that the AOS scheme creates a discrete scale-space. This means that desirable properties as the
maximum-minimum principle or convergence to a constant steady-state are provided.

To obtain similar regularization results in homogeneous regions (where g ≈ 1) to the regular-
ization obtained by Gaussian filtering, we recall the equivalence of a Gaussian convolution with
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Figure 6.2: Computation time of nonlinear diffusion filtering solved with an AOS scheme (1
iteration) compared to Deriche filtering on System A.

standard deviation σ to linear diffusion filtering for a certain end time T = σ2

2
. It is investigated

in [Wei98] that the accuracy of the AOS scheme depends on the step size τ . Because of this one
will usually need more than one iteration to solve for a certain end time T = nτ .

In Figure 6.2 we present how our CUDA implementation scales with different volume sizes.
We compared the Deriche filter presented in Section 4.2 to a single iteration of the AOS scheme.
As already mentioned, dependent on σ, significantly more iterations might be necessary in prac-
tice. Visual results where we filtered a MR scan of resolution 192 × 192 × 160 are shown in
Figure 6.3. We set σ = 3 and τ = 0.25 what results in n = 18 iterations (T = 32

2

!
= 0.25n).

For the computation of image d) we set g(s) = 1 and compared the AOS scheme to the direct
Gaussian convolution with a kernel radius of 4σ. We observed an average relative L1-error of
2.1%.

Overall we think, that these results look promising and it is worth to investigate more thor-
oughly how nonlinear diffusion filtering could improve registration results. Most likely regis-
tration results could already be significantly improved if nonlinear diffusion filters are only em-
ployed on pyramid levels with lower resolutions where computation times are still reasonable.
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Figure 6.3: Example of different filtering techniques with σ = 3.0. a) Original Image, b) Di-
rect Convolution (kernelRadius = 12), c) Nonlinear Diffusion Filter λ = 10.0, τ = 0.25, d)
Nonlinear Diffusion Filter g = 1, τ = 0.25.
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6.4 Polynomial Intensity Correction

During this work we took notice of a novel similarity measure for multimodal registration.

The investigation of this new metric is beyond the scope of this document and part of future
research. However, since first experimental results are quite promising, we want to provide
the idea and the first variation. This allows to employ this metric in the framework which was
presented in Chapter 3.

As illustrated in [Her02] cross correlation measures the affine dependence of the two random
variables Xf and Xg

u given by the reference image f and moving image g under the displacement
u. This basically results in finding an affine function which is best fitting the jpdf of both images.

Instead of looking for an affine function it was proposed in [Ou09] to find a polynomial which
is best fitting, in a least square sense, the joint pdf described by f and gu.

In other words, in a first step we try to model the intensity values gu(x) as polynomial func-
tion of the intensity values f(x). For this model, which is a polynomial intensity correction (PIC)
of the intensity values of f , we will then calculate the cost function as the SSD in a second step.
This idea was already described in [Ou09].

We will now present this similarity measure in a continuous setting and make it applicable
for nonrigid registration by providing the variational gradient.

For a given vector a ∈ Rm we define the polynomial function p : Rm × R 7→ R of degree
m− 1 as:

p(a, f(x)) =
m−1∑
i=0

aif(x)
i (6.6)

For a discrete subset of n samples {x1, . . . , xn} ⊂ Ω we also define:

yu :=


gu(x1)

...
gu(xn)

 , X :=


1 f(x1) . . . f(x1)

m−1

1 f(x2) . . . f(x2)
m−1

...
...

...
1 f(xn) . . . f(xn)

m−1

 (6.7)

We can now obtain the coefficients âu of the polynomial of degree m− 1, which is best approx-
imating the joint pdf of gu and f , by solving the minimization problem

âu = argmin
a∈Rm

||yu −Xa||2 . (6.8)
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We assume that n > m and that X has no rank deficiency. These are mild assumptions since we
can always pick more samples and know that the Vandermonde matrix X has full rank if at least
m image values f(xi) are pairwise distinct. In this case we can rewrite âu as

âu = (XTX)−1XT︸ ︷︷ ︸
=:C

yu (6.9)

where we find the i-th coefficient âiu by computing a scalar product as âiu = Ciyu.

With these preliminaries we can now consider the in [Ou09] presented cost function in the
continuous formulation

JPIC SSD[u, âu] =
1

2

∫
Ω

(gu(x)− p(âu, f(x)))
2 dx

=
1

2

∫
Ω

gu(x)−
m−1∑
i=0

Ci


gu(x1)

...
gu(xn)

 f(x)i


2

dx

(6.10)

where we calculate the first variation straight forward to

δhJPIC SSD[u, âu] =

∫
Ω

(gu(x)− p(âu, f(x)))∇gu(x)− m−1∑
i=0

Ci


∇gu(x1)

...
∇gu(xn)

 f(x)i

 · h(x) dx (6.11)

and provide the resulting gradient of JPIC SSD as

∇uJPIC SSD(x) = (gu(x)− p(âu, x))

∇gu(x)︸ ︷︷ ︸
1st term

−
m−1∑
i=0

Ci


∇gu(x1)

...
∇gu(xn)

 f(x)i

︸ ︷︷ ︸
2nd term

 . (6.12)

To evaluate this similarity measure we need to solve the minimization problem given by Eq.
6.8 in each iteration. We did this in first experiments by employing a free CUDA library for
linear algebra problems named CULAtools. Since this optimization algorithm just solved for the
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Figure 6.4: Registration results obtained with PICSSD: reference image (left), moving image
(middle), registration result (right).

coefficients a, but not for the left inverse C, we neglected the second term in the computation of
the gradient, which is shown in Eq. 6.12, in our first experiments.

For our first experiments we employed our CUDA implemented nonrigid registration pipeline.
As test data we used a volume of size 256×256×64 containing 64 slices of an image of “Lenna”.
We applied a generated deformation field, with displacements described by trigonometric func-
tions, and a nonlinear transfer function to this volume and tried to recover the deformation.

First visual results, which are given in Figure 6.4, show that, even if we approximated the
gradient by neglecting the 2nd term, we were able to recover the deformation.

After we have computed the variational gradient of the presented similarity measure, we
showed in a first experiment that it allows us to recover nonrigid deformations on commonly
used data. Further experiments which also take the second term of the differentiation into ac-
count need to be conducted. Also the influence of the parameters n and m is of high interest.

Within this Chapter we showed that our work can, next to general starting points, be extended
in many directions. We provided a first idea of how registration results could be improved by
more complex tricubic interpolation schemes and nonlinear filters used as regularizer. Especially
the performance of a new similarity criterion called polynomial intensity correction of the sum of
squared differences (PICSSD) applied on nonrigid registration tasks is of high interest for future
research.



Chapter 7

Summary

We motivated the problem and illustrated the need of a fast nonrigid registration in Chapter 1,
where we also gave an introduction to NVIDIA’s CUDA programming model. Especially ap-
plications as image guidance in neurosurgical interventions or new opportunities in ART were
mentioned in related works [MO08], [Rui10].

We provided an overview of nonrigid registration methods in Chapter 2. After describing a
general nonrigid registration pipeline and its components we focused on commonly used sim-
ilarity measures and transformation models. We also raised the challenge of picking the right
optimizer to solve the evolving optimization problem.

In Chapter 3, we picked a gradient based nonrigid registration algorithm, called flows of dif-

feomorphisms, and provided variational gradients for the three different similarity measures SSD,
MI and LCC. In this context we employed a Parzen estimator based on a normalized Gaussian
kernel to estimate pdfs.

We presented a complete nonrigid registration pipeline implemented in parallel on the GPU
using CUDA in Chapter 4. This pipeline resides completely on the GPU and does therefore
not suffer of expensive data transfers between host and device memory. The performance of
the introduced registration algorithm highly depends on a fast regularization of the deformation
fields and a fast computation of similarity measures. Thus it turned out that Gaussian filtering
and joint histogram calculation are the crucial building blocks in terms of computation time.
With a recursive implemented filtering algorithm based on Deriche’s approach [Der93] and an
optimized joint histogram calculation [Led10] we presented high performant parallel solutions
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on CUDA compatible devices for both challenges.

More precisely, we provided theoretical background on approximating filters by IIR filters,
which can be implemented recursively, in Section 4.2. We deduced a separable recursive filter,
which is approximating a Gaussian and suitable for an efficient parallel implementation on the
GPU. Performance experiments revealed convincing computation times for this building block.
Especially the independence of the measured runtimes of the standard deviation σ is emphasized
in this context. However, filtering along one dimension suffers dramatically of uncoalesced mem-
ory access, which is a bottleneck. Since the overall registration time is particularly dominated by
filtering, further research on filtering techniques should be conducted.

In Section 4.3 we presented three novel optimization strategies which allow for a faster com-
putation of joint histograms compared to a recent histogram algorithm, even if higher-order
interpolation schemes are used or memory is limited. While Bin Caching requires temporary
additional memory, optimizations based on Multiple Bin Encoding and Smart Texture Lookup

are always possible. The combination of MBE and BC allows for an average decrease in com-
putation time of around 20% on our test systems with a reduced memory overhead compared to
an advanced histogram algorithm. Even if STL is significantly slower than BC, this optimization
can still be useful when no additional memory is available. None of the proposed optimization
techniques require preprocessing steps.

In Chapter 5 we conducted experiments for the most important building blocks, filtering
and joint histogram computation, and benchmarked the complete registration pipeline against a
parallel CPU implementation. Compared to this parallel and optimized CPU implementation we
observed significant speed ups of up to one order in any experiment by employing commodity
GPU hardware. Even with a GeForce 8800 GTX, a rather low-end GPU outperformed a high
performant multicore system with 8× 2.5 GHz Intel Xeon CPUs by an overall factor of roughly
3 in practical experiments. This makes high performant nonrigid registration not just technically
possible but especially economically accessible.

Trading registration accuracy for computation time could allow with runtimes clearly below
1 second for real-time registration with several frames. Next to a detailed overview of the con-
tribution of individual CUDA kernels we also provided, dependent on the similarity criterion, a
memory footprint for different datasets. We completed this Chapter with a discussion of opti-
mization and performance aspects. In this context we emphasize especially the rather expensive
data transfers between global and texture memory.
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In Chapter 6 we proposed to extend this work by focusing on more complex regularization
techniques, as nonlinear diffusion filters which take structures into account. To what extent
higher-order interpolation schemes as tricubic interpolation allow for a reasonable trade off of
registration time to registration accuracy requires a detailed investigation in the future. We also
integrated a new similarity measure based on polynomial intensity correction (PIC) in the pre-
sented framework. While preliminary results obtained with this metric look very promising, a
further analysis remains open.

During the development, we obeyed important CUDA specific optimization guidelines. How-
ever, we point out that optimizing the configuration of important kernels dependent on the graph-
ics card and CUDA version could allow for a further decrease in computation time. This is of
particular interest for the presented recursive filter.

We conclude that a nonrigid registration pipeline based on the flows of diffeomorphisms can
be implemented very efficiently on the GPU using NVIDIA CUDA. We think that these perfor-
mance gains are a vast step towards the feasibility of nonrigid registration techniques in inter-
ventional applications. As for example stated in [Arc07], 30 seconds registration time might be
sufficient in a practical intraoperative setting.

The presented pipeline can easily provide these runtimes even on large datasets. The nonrigid
registration of datasets of sizes up to 2563 took in any conducted experiment less than 6 seconds,
even when complex similarity measures as MI and reasonable iteration schemes were employed.
By investigating device dependent optimizations further decreases in computation times can be
achieved. If registration time is not a too crucial factor, nonlinear regularization techniques or
more complex but more expensive interpolation schemes should allow for a better accuracy when
recovering nonrigid deformations.

Next to the performance we emphasize the importance of the maintainability of software
projects, which is given with CUDA.

We recall that within the scope of this work we first of all focused on computation times. Nev-
ertheless, also the validation of the quality of the recovered deformation is fundamental when it
comes to clinical applications and remains open. The selection of similarity criterion, trans-
formation model and optimizer is crucial in terms of runtime and registration accuracy and in
practice dependent on the application.
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Overall the results of this work are highly encouraging to further investigate nonrigid regis-
tration methods that are implemented on GPUs. With NVIDIA CUDA a powerful technique is
available to realize GPU implementations efficiently. The presented results open the door to new
applications for advanced registration methods, such as solving nonrigid alignment problems in
interventional imaging under strict time constraints.



Appendix A

Theorems and Calculations

Theorems

Theorem A.1. If G is symmetric and normalized and f is linear then (G ⋆ f)(t) = f(t).

Proof.

(G ⋆ f)(t) =

∫ ∞

−∞
G(τ)f(t− τ) dτ

=

∫ 0

−∞
G(τ)f(t− τ) dτ +

∫ ∞

0

G(τ)f(t− τ) dτ

=

∫ ∞

0

G(−τ)f(t+ τ) dτ +

∫ ∞

0

G(τ)f(t− τ) dτ

=

∫ ∞

0

G(τ)(f(t) + f(τ)) dτ +

∫ ∞

0

G(τ)(f(t)− f(τ)) dτ

=

∫ ∞

0

G(τ)2f(t) dτ

=2f(t)

∫ ∞

0

G(τ) dτ = 2f(t)
1

2
= f(t)

(A.1)
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Representation of the Operator g+
appr
(k)

If αi and λi (i = 1, . . . , 4) are complex but pairwise conjugate, we can do the following calcula-
tion to represent the operator g+appr(k) for k ≥ 0:

g+appr(k) =
4∑

i=1

αie
−λi

k
σ

= (a1 + ib1)e
−(β1+iω1)

k
σ + (a1 − ib1)e

−(β1−iω1)
k
σ

+ (a2 + ib2)e
−(β2+iω2)

k
σ + (a2 − ib2)e

−(β2−iω2)
k
σ

= e−β1
k
σ (a1 cos(−ω1

k

σ
) + ia1 sin(−ω1

k

σ
) + ib1 cos(−ω1

k

σ
)− b1 sin(−ω1

k

σ
))

+ e−β1
k
σ (a1 cos(ω1

k

σ
) + ia1 sin(ω1

k

σ
)− ib1 cos(ω1

k

σ
) + b1 sin(ω1

k

σ
))

+ e−β2
k
σ (a2 cos(−ω2

k

σ
) + ia2 sin(−ω2

k

σ
) + ib2 cos(−ω2

k

σ
)− b2 sin(−ω2

k

σ
))

+ e−β2
k
σ (a2 cos(ω2

k

σ
) + ia2 sin(ω2

k

σ
)− ib2 cos(ω2

k

σ
) + b2 sin(ω2

k

σ
))

= e−β1
k
σ (a1 cos(ω1

k

σ
)− ia1 sin(ω1

k

σ
) + ib1 cos(ω1

k

σ
) + b1 sin(ω1

k

σ
))

+ e−β1
k
σ (a1 cos(ω1

k

σ
) + ia1 sin(ω1

k

σ
)− ib1 cos(ω1

k

σ
) + b1 sin(ω1

k

σ
))

+ e−β2
k
σ (a2 cos(ω2

k

σ
)− ia2 sin(ω2

k

σ
) + ib2 cos(ω2

k

σ
) + b2 sin(ω2

k

σ
))

+ e−β2
k
σ (a2 cos(ω2

k

σ
) + ia2 sin(ω2

k

σ
)− ib2 cos(ω2

k

σ
) + b2 sin(ω2

k

σ
))

= e−β1
k
σ (a1 cos(ω1

k

σ
) + b1 sin(ω1

k

σ
))

+ e−β1
k
σ (a1 cos(ω1

k

σ
) + b1 sin(ω1

k

σ
))

+ e−β2
k
σ (a2 cos(ω2

k

σ
) + b2 sin(ω2

k

σ
))

+ e−β2
k
σ (a2 cos(ω2

k

σ
) + b2 sin(ω2

k

σ
))

= e−β1
k
σ (2a1 cos(ω1

k

σ
) + 2b1 sin(ω1

k

σ
))

+ e−β2
k
σ (2a2 cos(ω2

k

σ
) + 2b2 sin(ω2

k

σ
))

=
2∑

i=1

(a′i cos(
ωi

σ
k) + b′i sin(

ωi

σ
k))e

−βi
σ

k

(A.2)
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Z-transformation of the Operator g+
appr
(k)

We use known Z-transform pairs as given in [Che01, p. 210] and the linearity law to compute
the Z-transformation of

g+appr(k) =
2∑

i=1

(ai cos(
ωi

σ
k) + bi sin(

ωi

σ
k))e

−βi
σ

k, k ≥ 0 (A.3)

to

∞∑
k=0

g+appr(k)z
−k =

=
a1 − a1e

−β1
σ cos(ω1

σ
)z−1

1− 2e−
β1
σ cos(ω1

σ
)z−1 + e−2

β1
σ z−2︸ ︷︷ ︸

Z[a1(e
−β1

σ )k cos(
ω1
σ
k)]

+
b1e

−β1
σ sin(ω1

σ
)z−1

1− 2e−
β1
σ cos(ω1

σ
)z−1 + e−2

β1
σ z−2︸ ︷︷ ︸
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Code Listings and Kernel Summaries

Histogram Computation� �
1 /∗ ’ b i n ’ i s d e f i n e d as ’ v o l a t i l e ’ t o p r e v e n t t h e c o m p i l e r

from o p t i m i z i n g away t h e compar i son i n l i n e 1 2 . ∗ /

v o l a t i l e unsigned i n t b i n ;
3 unsigned i n t t a g g e d ;

b i n = ( unsigned i n t ) ( d a t a [ i ] ∗ ( b i n s − 1) ) ;
5 do
{

7 unsigned i n t v a l = h i s t o g r a m [ b i n ] & 0x07FFFFFF ;
/∗ The lower 5 b i t s o f t h e t h r e a d i d ( t i d ) are

9 used t o t a g t h e memory l o c a t i o n . ∗ /

t a g g e d = ( t i d << 27) | ( v a l + 1 ) ;
11 h i s t o g r a m [ b i n ] = t a g g e d ;
} whi le ( h i s t o g r a m [ b i n ] != t a g g e d ) ;� �

Listing B.1: Simulating atomic updates to shared memory for threads that belong to the same
warp. [Sha07b]
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Kernel Summaries

In the following we provide additional CUDA visual profiler outputs of the performance exper-
iments conducted in Section 5.3.2. These diagrams show the performance and contribution of
all kernels of the presented pipeline for different similarity criterions. Especially the memory
throughput is of interest, since it can be an indicator of the efficiency of a kernel.

Figure B.1: Kernel Summary for Nonrigid Registration Pipeline using SSD.
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Figure B.2: Kernel Summary for Nonrigid Registration Pipeline using MI.
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Figure B.3: Kernel Summary for Nonrigid Registration Pipeline using LCC.



Appendix C

Related Patents

In this section we mention patents that might be related to and patents that are originated in this
work. Of course we do not claim that this list is complete from a legal viewpoint.

System and Method for GPU-based 3D nonrigid registration

Application number 11/062,962
Publication number US 2005/0190189 A1
Publication date 1 September 2005
Inventor Christophe Chefd’hotel

Kinda Anna Saddi

Abstract:
A method of registering two images using a graphics processing unit includes providing a pair
of images with a first and second image, calculating a gradient of the second image, initializing a
displacement field on the grid point domain of the pair of images, generating textures for the first
image, the second image, the gradient, and the displacement field, and loading said textures into
the graphics processing unit. A pixel buffer is created and initialized with the texture containing
the displacement field. The displacement field is updated from the first image, the second image,
and the gradient for one or more iterations in one or more rendering passes performed by the
graphics processing unit.
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GPU-based image manipulation method for registration applications

Application number 11/109,126
Publication number US 2005/0271302 A1
Publication date 8 December 2005
Inventor Ali Khamene

Christophe Chefd’hotel
Jens Gühring
Bernhard Geiger
Sebastian Vogt

Abstract:
Exemplary systems and methods for performing registration applications are provided. An ex-
emplary system includes a central processing unit (CPU) for transferring a plurality of images
to a graphics processing unit (GPU); wherein the GPU performs a registration application on the
plurality of images to produce a registration result, and wherein the GPU returns the registration
result to the CPU. An exemplary method includes the steps of transferring a plurality of images
from a central processing unit (CPU) to a graphics processing unit (GPU); performing a regis-
tration application on the plurality of images using the GPU; transferring the result of the step of
performing from the GPU to CPU.
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The following two pending patents were filed based on our work presented in Section 4.3 and
Section 6.4.

Optimization of the Computation of Joint Histograms and Mutual Information for NVIDIA
CUDA Compatible Devices

Application number 61/320,911
Publication date 05 April 2010
Status Patent Pending
Inventor Christian Ledig

Guillaume Bousquet

Abstract:
We describe CUDA optimizations to solve the time consuming task of (Joint-) Histogram com-
putation, especially in image registration using Mutual Information. Fast computation of His-
tograms is difficult since it is hard to parallelize on GPUs. By using CUDA together with im-
provements of a certain algorithm a fast computation gets possible.

Introduction of Polynomial Intensity Correction for Nonrigid Registration in a Variational
Framework

Application number 61/365,521
Publication date 19 July 2010
Status Patent Pending
Inventor Christian Ledig

Christophe Chefd’hotel

Abstract:
We present the derivation of a similarity measure, which is based on a Polynomial Intensity Cor-
rection of the Sum of Squared Difference (PICSSD), in a variational framework and make it thus
applicable for nonrigid registration tasks.
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List of Abbreviations

2D Two Dimensional
3D Three Dimensional
AOS Additive Operator Splitting
ART Adaptive Radiation Therapy
BC Bin Caching
CC Cross Correlation, Correlation Coefficients
CSYS Coordinate System
CPU Central Processing Unit
CR Correlation Ratio
CT Computed Tomography
CUDA Compute Unified Device Architecture
fMRI Functional Magnetic Resonance Imaging
GPU Graphics Processing Unit
IIR Infinite Impulse Response
jpdf joint probability density function
LCC Local Cross Correlation
MBE Multiple Bin Encoding
MI Mutual Information
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
mutex Mutual Exclusion
NMI Normalized Mutual Information
PDE Partial Differential Equation
pdf probability density function
PET Positron Emission Tomography
PIC Polynomial Intensity Correction

95



96 LIST OF ABBREVIATIONS

PICSSD Polynomial Intensity Correction of the Sum of Squared Differences
SAD Sum of Absolute Differences
SSD Sum of Squared Differences
STL Smart Texture Lookup
TPS Thin-Plate Splines
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[Cat92] F. Catté, P. Lions, J. Morel, and T. Coll. Image selective smoothing and edge detec-
tion by nonlinear diffusion. SIAM Journal on Numerical Analysis, 29(1):182–193,
February 1992.

[Che01] C. Chen. Digital Signal Processing - Spectral Computation and Filter Design. Oxford
University Press, Inc., New York, 2001.

[Che02] C. Chefd’Hotel, G. Hermosillo, and O. Faugeras. Flows of diffeomorphisms for mul-
timodal image registration. In Proceedings of the IEEE International Symposium on

Biomedical Imaging (ISBI), pages 21–28, Washington, DC, USA, July 2002.

[Che09] S. Chen, J. Qin, Y. Xie, W. Pang, and P. Heng. CUDA-based acceleration and algo-
rithm refinement for volume image registration. In Proceedings of the International

Conference on Future BioMedical Information Engineering (FBIE), pages 544–547,
Sanya, China, December 2009.

[Cla06] U. Clarenz, M. Droske, S. Henn, M. Rumpf, and K. Witsch. Computational meth-
ods for nonlinear image registration. In O. Scherzer, editor, Mathematical Method

for Registration and Applications to Medical Imaging, Mathematics in Industry, vol-
ume 10, 2006.

[Cru03] W. R. Crum, L. D. Griffin, D. L. G. Hill, and D. J. Hawkes. Zen and the art of
medical image registration: correspondence, homology, and quality. NeuroImage,
20(3):1425–1437, November 2003.

[Cru04] W. R. Crum, T. Hartkens, and D. L. G. Hill. Non-rigid image registration: theory and
practice. The British Journal of Radiology, 77(2):140–153, 2004.

[Der87] R. Deriche. Separable recursive filtering for efficient multi-scale edge detection. In
Proceedings of the International Workshop Machine Vision and Machine Intelligence,
pages 18–23, Tokyo, Japan, February 1987.

[Der90] R. Deriche. Fast algorithms for low-level vision. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 12(1):78–87, January 1990.



BIBLIOGRAPHY 103

[Der93] R. Deriche. Recursively implementing the Gaussian and its derivatives. Technical
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