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Abstract

The semantic parsing of brain MR images is an important step in many
applications that require the segmentation of medical images. In this chap-
ter we describe the most commonly used approach for image segmentation,
namely atlas-based segmentation. We discuss the main components of atlas-
based segmentation, including atlas-to-image registration, label fusion and
atlas selection. In addition, we also review di↵erent brain atlases that are
frequently used as anatomical priors in image segmentation of neuroanatom-
ical structures.
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1. Introduction

The extraction of a single or multiple anatomical meaningful regions of in-
terest (ROIs) from a subject’s brain magnetic resonance (MR) image is
essential for computer-aided diagnosis and therapy planning as well as for
the extraction of biomarkers which are clinically useful (e.g. in clinical tri-
als). The process of subdividing an image into distinct regions is referred to
as segmentation. Once a brain MR image is segmented into its individual
anatomical components, volumes or shape related measures can be readily
quantified. In addition, the microstructure tissue properties of anatomical
regions can be assessed via multi-modal MR imaging, e.g . di↵usion weighted
MR imaging.

The process of semantic segmentation refers to the labelling of pixels or
voxels into anatomical meaningful regions. In the context of the segmenta-
tion of brain MR images this often includes tissue segmentation as well as
the parcellation of tissues into distinct regions. For example, grey matter
(GM) maybe subdivided into cortical GM and sub-cortical GM. The cor-
tical GM maybe further subdivided into the temporal lobe, occipital lobe,
parietal lobe and frontal lobe. Each lobe can be further subdivided in line
with knowledge from anatomical or cytoarchitectonic brain atlases such as
the Brodmann atlas (Brodmann, 1909). Similarly, sub-cortical GM can be
further di↵erentiated into structures such as thalamus, putamen and basal
ganglia. The semantic segmentation is heavily dependent on a-priori knowl-
edge about the location and relationship of di↵erent anatomical structures
in the brain. In most cases this knowledge is represented in form of atlases
of the human brain.

In this chapter, we provide an overview of existing atlas-based segmentation
methods (Section 2). Even though most techniques are applicable to the seg-
mentation of other organs or structures as well as other imaging modalities,
particular focus is placed on methods for the segmentation of T1-weighted
(T1w) MR brain images into anatomical structures. In Section 3 we also
describe several publicly available brain atlases that are essential for the
incorporation of semantic knowledge into the segmentation process.

2. Atlas-based segmentation methods

In atlas-based methods the segmentation of a brain image is inferred by
aligningM brain atlases denoted byAm withm = 1, . . . ,M . A brain atlas is
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Figure 1: A brain atlas Am consists of an intensity image IAm with corresponding seg-
mentation LA

m. The reference segmentation is ideally created manually by an expert who
follows a detailed segmentation protocol. This process is very time consuming and not
scalable as it can only be performed on a small number of images.

usually created by an expert by manually or semi-automatically annotating
a given volumetric brain image. The term atlas comprises the annotated
atlas intensity image, IAm, and the corresponding reference segmentation,
LA
m, thus Am = {IAm,LA

m}. A single brain atlas is shown in Figure 1. A
detailed overview of commonly used brain atlases is provided in Section 3.

The aim of whole-brain segmentation is to segment a target image Itgt into
K distinct structural ROIs. The unsegmented image Itgt 2 ⌦ is indexed as
Itgt = {y1, y2, . . . , yN} where yi 2 R+. Here yi (i = 1, . . . , N) denotes the
intensity value of the i-th voxel. The corresponding, inferred label map Ltgt

is indexed accordingly as Ltgt = {l1, l2, . . . , lN}. The probabilistic (or soft)
segmentation is denoted by Ptgt = {p1,p2, . . . ,pN}, where pi is a k-valued
vector with ||pi||1 = 1 and pi(k) � 0 describes the probability of voxel i
belonging to structure k 2 {1, . . . ,K}. It can be observed that the label
map Ltgt is defined as:

li = argmax
k

pi(k) (1)

If pi is multi-modal li can be chosen as any of the modes, for example at
random (Heckemann et al., 2006).

In the following an overview over widely used atlas-based segmentation ap-
proaches and their essential building blocks, brain extraction, atlas align-
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Figure 2: Schematic illustration of a typical segmentation pipeline with the common build-
ing blocks: brain extraction, atlas alignment, label fusion and segmentation refinement.
The unsegmented target image and the estimated segmentation are outlined in blue, the
atlas images are outlined in red and the propagated atlas labels in orange respectively.

ment, label fusion and segmentation refinement is provided. A schematic
illustration of this procedure is provided in Figure 2.

2.1. Brain extraction

A prerequisite of most anatomical segmentation approaches is the availabil-
ity of a binary brain mask discriminating the actual brain from non-brain
tissue such as the skull, the neck or the eyes. The calculation of this mask
is, however, not trivial. Many brain extraction methods tend to produce
either too restrictive or too generous masks and there is no consensus of
what constitutes an ideal brain mask (Eskildsen et al., 2012).

A rough categorisation can be made by distinguishing manual approaches
(Eritaia et al., 2000), semi-automatic approaches (Freeborough et al., 1997)
and automatic approaches (Sandor and Leahy, 1997; Smith, 2002; Ségonne
et al., 2004; Leung et al., 2011; Eskildsen et al., 2012; Manjón et al., 2014).
Approaches that require user interaction usually require substantial exper-
tise, have poor inter- and intra-rater reliability and are very time consuming,
which can be prohibitive when large databases are to be analysed (Free-
borough et al., 1997; Warfield et al., 2004; Eskildsen et al., 2012). Skull-
stripping is not the focus of this work, but a brief overview over existing
approaches is provided in the following.
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2.1.1. Deformable models

Sandor and Leahy (1997) (Brain Surface Extractor (BSE)) employ an edge-
detector and morphological operations to calculate a brain mask. In Smith
(2002); Ségonne et al. (2004) a deformable model is automatically fit to the
brain surface. Smith (2002) (Brain Extraction Tool (BET)) calculate the
center of gravity and an approximate radius of the head by thresholding
the image using robust minimum/maximum estimates of the image intensi-
ties. Based on this information a brain surface tessellation is initialised that
iteratively evolves. The process is constraint by both intensity and smooth-
ness terms. Ségonne et al. (2004) obtain an initial estimate of the brain
mask using a watershed algorithm. The surface of this approximate but ro-
bust estimate is then employed as initialisation of an active contour model
(Kass et al., 1988) that integrates both geometric and atlas-based informa-
tion (Ségonne et al., 2004). A quantitative comparison of these methods
(Sandor and Leahy, 1997; Smith, 2002; Ségonne et al., 2004) can be found
in Fennema-Notestine et al. (2006).

2.1.2. Database of extracted reference images

More recent and potentially more accurate methods for brain extraction
rely on a database of brain extracted reference magnetic resonance imag-
ings(MRIs) (Leung et al., 2011; Eskildsen et al., 2012; Manjón et al., 2014).
In Leung et al. (2011) the authors nonrigidly align the reference images to
the subject that is to be extracted (cf . Section 2.2) and perform label fu-
sion (cf . Section 2.3.1). Other approaches such as Eskildsen et al. (2012);
Manjón et al. (2014) follow a patch-based label fusion approach using linear
registration only (cf . Section 2.3.4). Approaches for brain extraction tend
to employ similar methodology to the techniques for the segmentation of
anatomical structures. A comprehensive summary of relevant literature is
provided in Leung et al. (2011) or Eskildsen et al. (2012).

In the remainder of this review it is assumed that Itgt and the atlas images
IAm are brain extracted. Skull-stripping the atlas images is often trivial as
the corresponding expert label maps LA

m can be binarised and employed as
mask. The calculation of accurate brain masks for images which contain
pathologies is, however, more complicated.
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Figure 3: Schematic process of registering a source image Isrc to a target image Itgt with
calculated transformation �. The di↵erence image of Isrc, �(Isrc), and Itgt is shown before
and after registration respectively. The target image is outlined in blue, the source image
is outlined in red (before) and orange (after registration).

2.2. Atlas-to-image registration

To exploit the labelling information encoded in the atlases most segmenta-
tion methods rely on aligning each individual atlas Am with Itgt. This pro-
cess is commonly referred to as image registration and usually driven by the
image intensities of the corresponding images. Image registration is highly
complex and an active area of research that received continuous attention
over the last decades. Therefore, it is only briefly discussed here. A compre-
hensive overview and evaluation of established registration approaches can
be found in Zitová and Flusser (2003); Sotiras et al. (2013) and Klein et al.
(2009).

2.2.1. Formulation of the registration problem

In general, image registration seeks to calculate a transformation � : ⌦ ! ⌦
that transforms a source (moving) image Isrc such that its similarity with a
target (fixed) image Itgt is maximised. The process of image registration is
illustrated in Figure 3. For a given similarity measure S(·, ·) : RN ⇥RN ! R
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the optimisation problem can be formulated as:

�̂ = argmin
�

[�S(Itgt,�(Isrc)) +R(�)] (2)

Here R is a regularisation term. In nonrigid registration, regularisation of
the usually ill-posed optimisation problem is an important factor to encour-
age smooth and ideally even di↵eomorphic transformations (Rueckert et al.,
1999; Vercauteren et al., 2009).

2.2.2. Similarity measures

To quantify image similarity several measures have been proposed. Common
choices for S include sum of squared di↵erences (SSD), mutual information
(Collignon et al., 1995; Viola and Wells III, 1997) (MI), normalised mutual
information (Studholme et al., 1999) (NMI) or cross-correlation (CC). A
definition of these similarity measures is provided in Table 2.2.2. The basic
assumption of SSD is that intensities of perfectly matched images are iden-
tical (Roche et al., 1999). This assumption can be relaxed when using CC
(a�ne relationship) or MI/NMI (statistical relationship) (Roche et al., 1999;
Artaechevarria et al., 2009). SSD and CC are often used to register images
from the same modality/sequence, while the statistical measures have been
successfully applied for multi-modal registration.

Measure Definition Value
range

Simi-
larity/
Dissimi-
larity

SSD(I,J)
PN

i=1
(I(i)� J(i))2 SSD� 0 Dissimilarity

MI(I,J) H(I) + H(J)�H(I,J) MI�0 Similarity

NMI(I,J) H(I)+H(J)
H(I,J) 1NMI2 Similarity

CC(I,J) Cov(I,J)p
Var(I)

p
Var(J)

-1CC1 Similarity

Table 1: Overview over possible measures to quantify similarity between two images I
and J: SSD, MI, NMI and CC. Note that SSD is a measure of dissimilarity. MI and NMI
require the calculation of individual histograms (hI , hJ) and the joint histogram (hI,J) of
the intensity images. The measures can then be calculated based on the joint, H(I,J), and
the marginal entropies, H(I) and H(J).
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2.2.3. Transformation models

In image registration the degrees of freedom of � are essential as they deter-
mine the level of detail of the computed transformations. Generally, it can
be distinguished between rigid, a�ne and non-rigid image alignment.

Rigid registration establishes the optimal alignment of two images by allow-
ing translations and rotations only. A�ne registration additionally compen-
sates for transformations that include shear and scale. The recovery of both
rigid and a�ne transformations requires the solution of a low-dimensional
optimisation problem that can be solved e�ciently. An accurate a�ne trans-
formation is usually a crucial prerequisite for a subsequent non-rigid regis-
tration (Rueckert et al., 1999).

The aim of non-rigid registration is the recovery of a deformation field that
brings both images into optimal alignment. Here, the deformation field can
be described by a transformation model which is often built on cosine or B-
spline basis functions (Ashburner and Friston, 1999; Rueckert et al., 1999;
Andersson et al., 2007; Klein et al., 2009; Modat et al., 2010). Next to these
approaches, non-parametric methods that do not model the transformation
explicitly have been successfully applied. Popular examples include the so-
called Demons algorithm (Thirion, 1998; Vercauteren et al., 2009) or the
symmetric registration method proposed in Avants et al. (2008). The pa-
rameter space of the resulting optimisation problem is large and can exceed
millions of parameters, especially if no transformation model is used (Klein
et al., 2009; Vercauteren et al., 2009).

In the context of atlas alignment for image segmentation it should be noted
that non-rigid transformations can be calculated at di↵erent levels of de-
tail. For example, when an explicit transformation model based on B-spline
basis functions is used, the control point spacing and thus the number of
parameters can be varied.Usually a finer control point spacing yields a more
accurate registration result, however, it comes at a substantially increased
computational cost.

2.2.4. Large deformation registration problem

The accurate registration of an atlas and unsegmented MR image can be
di�cult if the target image di↵ers from the available atlases due to gen-
eral anatomical variability or pathological changes. Also intensity inhomo-
geneities or noise can facilitate an accurate registration di�cult (Vovk et al.,
2007).
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There have been several methods proposed to address the large deforma-
tion registration problem in adult brains in the context of Alzheimer’s dis-
ease (AD). In (Heckemann et al., 2010) the authors proposed Multi-Atlas
Propagation with Enhanced Registration (Heckemann et al., 2010, 2011)
(MAPER). MAPER employs automatically calculated brain tissue segmen-
tations to guide the registration process. This allows a robust image align-
ment, even if the target image shows severe brain atrophy. In another
approach, Wolz et al. (2010a) described an iterative approach to improve
segmentation accuracy by propagating atlas labels over a learned manifold
while refining intermediate segmentations based on image intensities using
graph-cuts (GC) (cf . Section 2.4). It was shown by Gerber et al. (2010) that
coordinates within a low-dimensional space, a nonlinear manifold, allow for
a meaningful image comparison and statistical tests.

A manifold of the anatomical variation in a given data set is also learned in
(Hamm et al., 2010). In this work it was shown that the problem of recov-
ering a large deformation between two images can be simplified by solving
a series of small deformation registration problems (Hamm et al., 2010).
The small deformations are calculated along the shortest path between the
images on the learned manifold (Hamm et al., 2010).

In the following, �m denotes the calculated transformation from the atlas
space of Am to the coordinate system of Itgt and A�

m denotes the propa-
gated atlas respectively. Once the atlas label maps, LA

m, reside in the same
coordinate system as the unsegmented target image, Itgt, a consensus seg-
mentation can be inferred using a variety of label fusion techniques (cf .
Section 2.3).

2.3. Label fusion

2.3.1. Majority vote fusion

In majority vote fusion (MVF), also called “vote-rule” or “decision” fusion,
each of the M propagated atlas labels LA

m contributes equally to the final
segmentation. A certain voxel is thus labelled according to the opinion on
which the majority of the propagated atlas segmentations agree. Formally
the probability of voxel i being labelled as structure k can be calculated as:

pi(k) =
1

M

MX

m=1

�(LA
m(i), k) (3)
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Here, �(·, ·) is the Kronecker delta defined as:

�(v, w) =

(
1 if v = w

0 otherwise
(4)

The actual segmentation estimate, Ltgt, is then readily inferred through
Equation 1.

MVF was first described by Rohlfing et al. (2004) where it was applied
to the segmentation of bee brains. Heckemann et al. (2006) successfully
employed MVF to segment MR brain images and presented a model that
describes the basic assumption of label fusion. In this model it is assumed
that there are two major sources of segmentation errors: 1) Systematic errors
(✏sys) due to deviations of the (manual) reference segmentation from the
true segmentation or due to consistent registration bias. 2) Random errors
(✏rand) introduced due to inaccuracies in individual reference labels or image
registrations (Heckemann et al., 2006). With this assumption random errors
can be corrected by fusing several label estimates. However, the systematic
errors asymptotically limit the segmentation accuracy as the number of fused
atlases increases (Heckemann et al., 2006). In Heckemann et al. (2006) the
following relation is suggested to model the segmentation accuracy SImodel,
measured as Dice coe�cient (Dice, 1945) or so-called similarity index (SI),
dependent on the number of atlases K:

SImodel = 1� ✏sys �
✏randp
K

(5)

Figure 4 illustrates the schematic process and the qualitative behaviour of
label fusion approaches using the model from Equation 5. According to
Artaechevarria et al. (2009) MVF is the most simple and most popular
label fusion strategy, and does not require any a priori knowledge except
for the actual segmentations that are to be fused. MVF has its origins in
the more general combination of classifiers as for example Xu et al. (1992),
Kittler et al. (1998) or Kuncheva (2004).

2.3.2. Atlas selection

If only a single atlas from a given atlas database is to be used, a carefully
selected atlas that is similar to Itgt allows a higher segmentation accuracy
than choosing an atlas at random. This was confirmed in a variety of ap-
plications, such as the segmentation of computed tomography (CT) images
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Figure 4: Left: Schematic process of fusing K atlas labels that have been aligned to
the target image into a consensus segmentation. Right: Illustrations of the increasing
segmentation accuracy with increasing number of fused atlas labels. The model described
in Equation 5 is shown for ✏sys = 0.144,✏rand = 0.1 (red) with corresponding asymptotic
limit (blue). A qualitative plot indicating the increased accuracy when atlas selection is
used is also shown (green). The diagram is based on and adapted from Heckemann et al.
(2006); Aljabar et al. (2009)

of the head (Han et al., 2008) or the segmentation of bee brains (Rohlfing
et al., 2004) and human brains in MRI (Wu et al., 2007).

However, the fusion of multiple atlases (e.g . using MVF) substantially out-
performs the segmentation based on a single atlas only (Rohlfing et al., 2004;
Heckemann et al., 2006; Aljabar et al., 2009). Klein et al. (2007) and Aljabar
et al. (2009) thus suggested to combine these approaches and perform label
fusion on a selection of atlases from a larger database.

As selection criterion, the image similarity between the aligned atlas images
and Itgt can be calculated using a variety of similarity measures such as SSD,
MI (Collignon et al., 1995; Viola and Wells III, 1997; Klein et al., 2007), NMI
(Studholme et al., 1999; Wu et al., 2007), or CC (Aljabar et al., 2009) (cf .
Table 2.2.2). Further, image similarity can be assessed on di↵erent alignment
levels, e.g . after a�ne or nonlinear registration (Rohlfing et al., 2004; Klein
et al., 2007; Wu et al., 2007), but also in a template space (Aljabar et al.,
2009). When the selection is performed in a template space all atlas images
can be pre-registered to this template. This reduces the computational
burden dramatically as during atlas selection a single registration, aligning
Itgt to the template, su�ces. Only the selected atlases are then aligned
with Itgt in a non-rigid fashion (Aljabar et al., 2009). In addition to image
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similarity, other criteria such as characteristics of the required deformation
to align the images (Rohlfing et al., 2004) or meta-information (age, sex,
etc.) (Aljabar et al., 2009) can be used.

In summary, atlas selection addresses two limitations of standard multi-atlas
label fusion: First, the accurate nonlinear alignment (cf . Section: 2.2) of nu-
merous atlases to the unsegmented image, Itgt, is computationally intensive.
Second, it was shown that there is an asymptotic limit of the segmentation
accuracy caused by systematic and anatomical variations (Aljabar et al.,
2009; Heckemann et al., 2006). Segmentation results can substantially im-
prove up to around 20 selected atlases (Heckemann et al., 2006; Aljabar
et al., 2009) (cf . Figure 4). However, using more atlases with an anatomy
that increasingly di↵ers from Itgt might even deteriorate segmentation ac-
curacy (Aljabar et al., 2009). Nevertheless it should be noted that the ideal
number of selected atlases might be strongly dependent on the quality of
the atlases, the anatomical variability of the subjects and the ROI that is
to be segmented.

2.3.3. Weighted vote fusion

Instead of selecting atlases, and thus potentially neglecting relevant infor-
mation, another approach is to weigh the contribution of each individual
atlas. A detailed description and comparison of this category of label fusion
can be found in Artaechevarria et al. (2009).

In globally weighted fusion (GWF) the probabilistic label estimates are cal-
culated based on global, atlas-dependent voting weights wg

m as:

pi(k) =

PM
m=1

wg
m�(LA

m(i), k)
PK

k0=1

PM
m=1

wg
m�(LA

m(i), k0)
(6)

Here, the voting weight, wg
m, of each atlas is generally determined by the

image similarity of the transformed atlas MRIs, IAm, and the subject image
Itgt. Potential measures to quantify this similarity of intensity images in-
clude SSD, MI, NMI or CC (Artaechevarria et al., 2009). The calculation of
global voting weights based on these measures, wgSSD

m , wgCC
m , wgMI

m , wgNMI
m ,

is described in Table 2.2.2. As the SSD increases with increasing image
dissimilarity the voting weight is defined as the inverse of the actual SSD,
wgSSD
m = SSD(IAm, Itgt)�1. Artaechevarria et al. (2009) further introduced

a gain parameter, p, that potentiates the respective weights, e.g . (wgNMI
m )p.

However it was found that the segmentation result is usually not very sensi-
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tive towards this parameter and the optimal choice depends on the dataset
(Artaechevarria et al., 2009).

Segmentation accuracy can be further increased by calculating local vot-
ing weights, wl

m(i), within a location-specific region (Artaechevarria et al.,
2009). These regions can be for example a spherical or cubical neighbour-
hood of the voxel under consideration. The size of the neighbourhood is a
tuneable parameter, however, a neighbourhood radius of r = 5 was shown
to yield good results (Artaechevarria et al., 2009). In locally weighted fusion
(LWF) the probabilistic segmentation estimates are calculated as:

pi(k) =

PM
m=1

wl
m(i)�(LA

m(i), k)
PK

k0=1

PM
m=1

wl
m(i)�(LA

m(i), k0)
(7)

It was shown that weighted fusion overall outperforms MVF (Artaechevarria
et al., 2009; Sabuncu et al., 2010). LWF is usually superior to GWF and
particularly useful in image regions with high contrast (Artaechevarria et al.,
2009; Sabuncu et al., 2010). The ideal fusion strategy is thus dependent on
the brain anatomy that is to be segmented. LWF with SSD often performs
well (Artaechevarria et al., 2009; Wang et al., 2013). However, when com-
pared to NMI, SSD is more sensitive to noise in low-contrast regions and
relies on the assumption of similar intensity profiles of the images (Roche
et al., 1999; Artaechevarria et al., 2009).

2.3.4. Patch-based label fusion

Inspired by the work on non-local means filtering for image denoising (Buades
et al., 2005; Coupé et al., 2008), Coupé et al. (2010) proposed a patch-based
approach to address the problem of label fusion. Patch-based label fusion
was subsequently described thoroughly in Rousseau et al. (2011) and Coupé
et al. (2011). In patch-based label fusion techniques image patches of the
unsegmented image are locally compared to image patches in the atlas im-
ages. Usually patches are defined as three-dimensional (3D) volumes of a
given diameter. For a fixed patch in Itgt with centre voxel i, P (Itgt, i), nu-
merous patches in IAm are taken into account. Specifically, all patches with
centre j, P (IAm, j), with the spatial constraint that j lies within a defined
neighbourhood,Ni, of i are considered. Both the size of the 3D patches
(patch size) and the size of the neighbourhood (search window size) are pa-
rameters that need to be chosen. An illustration of this process is provided
in Figure 5. The exact label fusion procedure can be formalised as:
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Figure 5: Illustration of the weight calculation when segmenting one example voxel i. The
weights, w⇤

m(i, j), are determined between the fixed reference patch, P (Itgt, i) (yellow),
and atlas patches, P (IAm, j) (red). For each atlas image several atlas patches that are
shifted within a local search neighbourhood (cyan) are considered. With a weighted voting
approach a probabilistic segmentation (cf . Eq. 8) is obtained. Illustration adapted and
modified from Coupé et al. (2011); Rousseau et al. (2011).
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pi(k) =

PM
m=1

P
j2Ni

w⇤
m(i, j)�(LA

m(j), k)
PK

k0=1

PM
m=1

P
j2Ni

w⇤
m(i, j)�(LA

m(j), k0)
(8)

Here w⇤
m(i, j) is a weight that is calculated based on the similarity of the

patch P (Itgt, i), centred at voxel i in Itgt, and the patch P (IAm, j), centred
at voxel j in atlas IAm. A common definition (Buades et al., 2005; Coupé
et al., 2011; Rousseau et al., 2011) of this similarity measure is:

w⇤
m(i, j) = exp

�||P (Itgt, i)� P (IAm, j)||2

Nh
(9)

Here || · || is the L2-norm and N is the number of voxels in the patches.
Further, h is a decay parameter that requires tuning (Coupé et al., 2011).
If h ! 1 all patches are weighted equally, if h ! 0 only the best matching
patch is selected. Potentially, w⇤

m(i, j) might be set to zero below a given
threshold (Coupé et al., 2011).

The main motivation for patch-based label fusion is to remove the compu-
tationally expensive requirement of nonrigidly aligning the reference atlases
(cf . Sec. 2.2). The patch-based formulation further relaxes the assumption
of an one-to-one mapping between the atlas images, IAm, and the unseg-
mented image, Itgt (Rousseau et al., 2011). An approximate alignment,
using for example a�ne registration (Coupé et al., 2011), is su�cient to
establish reasonable patch correspondences. Nevertheless, it must be noted
that nonrigid alignment can further improve patch-based segmentation as
it allows the more rigorous incorporation of topological constraints (Coupé
et al., 2011; Rousseau et al., 2011).

In patch-based label fusion one can discriminate point-wise and multipoint
estimators (Rousseau et al., 2011). In Equation 8 a point-wise estimator is
described, in which the label probability of each individual voxel (or point)
i is estimated individually. In contrast to this, multipoint estimators calcu-
late at each individual voxel a label patch estimate (Rousseau et al., 2011).
Specifically, instead of considering only the centre label, LA

m(j) (cf . Equa-
tion 8), label information from the whole patch centred at j is fused into a
patch estimate. While point-wise estimators are commonly used and com-
putationally more e�cient, it was shown that multipoint estimators can
potentially increase segmentation accuracy (Rousseau et al., 2011). More
details on multipoint estimators can be found in Katkovnik et al. (2010);
Rousseau et al. (2011).

Recent advances in patch-based segmentation include the application of
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sparsity techniques (Tong et al., 2013) or the e�cient search of patch corre-
spondences using the PatchMatch algorithm (Barnes et al., 2009; Shi et al.,
2014; Ta et al., 2014). Next to image segmentation, it was proposed to em-
ploy patch-based methods to grade subjects according to clinical variables
(Coupé et al., 2012; Coupé et al., 2012). In this patch-based grading ap-
proach a meaningful clinical label, e.g . AD or healthy control (HC), is asso-
ciated with each patch of a reference database. Instead of fusing anatomical
labels, LA

m(j), these clinical labels are fused in Equation 8 within a region.
It was shown that the resulting grading value allows the accurate discrimi-
nation of di↵erent AD disease states (Coupé et al., 2012; Coupé et al., 2012).

2.3.5. Joint label fusion

The label fusion techniques that were presented so far treat each atlas inde-
pendent from the others for the calculation of voting weights. Thus, none
of these approaches takes into account that similar or, in general, correlated
atlases might produce similar segmentation errors (Wang et al., 2013). To
address this limitation Wang et al. (2013) introduced an approach called
joint label fusion (JLF) in which the joint probability distribution of two
atlases producing the same labelling error is explicitly modelled.

In particular the authors aim to minimise the expected error between the
true, yet unknown segmentation of Itgt and the consensus segmentation
estimate Ltgt. This optimisation problem can be solved once dependency
matrices Mi of size M ⇥M are established that model the likelihood that a
pair of the M available atlases make an identical error at voxel i. In Wang
et al. (2013), the authors calculate the correlation of the intensity similarity
of two atlases with respect to Itgt. A local estimation of Mi is obtained
by performing the similarity computation in a local neighbourhood of the
corresponding voxel i. More details on JLF can be found in Wang et al.
(2013).

Many approaches ranking among the top performing methods are based on
JLF strategies that incorporate the non-local patch-based concept. This was
confirmed for the segmentation of various anatomies in recent Segmentation
Challenges (Landman and Warfield, 2012; Asman et al., 2013). For exam-
ple, JLF performs very well for the segmentation of the brain into distinct
ROIs (Landman and Warfield, 2012; Asman et al., 2013), but also for the
segmentation of the myocardium (Asman et al., 2013; Bai et al., 2015).
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2.3.6. Statistical label fusion

With origins in the popular Simultaneous Truth And Performance Level
Evaluation (Warfield et al., 2004) (STAPLE) algorithm there is another
category of statistical label fusion approaches. Given several manual label
sets, STAPLE was proposed to simultaneously estimate the performance
level parameters of each expert rater and the most probable ground truth.
The STAPLE algorithm computes a probabilistic estimate of the true seg-
mentation (Warfield et al., 2004). For the sake of consistency with existing
literature the commonly used notation is employed to outline the STAPLE
algorithm. This notation is slightly di↵erent in comparison to the rest of
this section. This also accommodates the fact that STAPLE was originally
described for the estimation of a ground truth from several expert reference
segmentations rather than for the fusion of automatic label estimates. The
following description is adapted from Warfield et al. (2004), where more
details about the exact implementation of STAPLE can be found.

Let D be a N ⇥ M matrix that describes the decisions of M raters (or
atlases) at N voxels. Let T be a vector of size N indicating the true but
unknown segmentation. For K possible labels D and T are indexed as
Dim 2 {1, . . . ,K} and Ti 2 {1, . . . ,K}. The goal of the STAPLE algorithm
is to estimate a performance tensor ✓̂ of size M ⇥K⇥K that maximises the
log-likelihood of observing the complete data (D,T). Here, element ✓ms0s

quantifies the probability that rater m decides on label s0 given that the
true label is s. For a probability mass function f(D,T|✓) that describes the
probability of observing the complete data, ✓̂ can be calculated by solving:

✓̂ = argmax
✓

ln f(D,T|✓) (10)

The solution of this problem would be trivial if the true segmentation T
was known. As T is however unknown Warfield et al. (2004) suggested to
employ the expectation-maximisation (EM) algorithm to solve Equation 10.
In this approach, a ground truth T is estimated in the Expectation-step and
the ideal performance parameters ✓̂ found in the Maximisation-step. This is
repeated iteratively until the model converges. Convergence to a local maxi-
mum of Equation 10 is guaranteed (Warfield et al., 2004). There are di↵erent
strategies to initialise ✓ in the first iteration (Warfield et al., 2004). Further-
more, spatial prior information can be incorporated through probabilistic
priors or smoothness constraints based on Markov random fields(MRFs)
(Warfield et al., 2004).

Next to the basic STAPLE algorithm outlined above, there have been several
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successful attempts to incorporate both image intensity information (Car-
doso et al., 2013; Asman and Landman, 2013) and the concept of non-local
patch-based approaches into the STAPLE framework (Asman and Landman,
2013). Many other extensions include formulations that allow the applica-
tion to data with missing labels (Landman et al., 2012), local estimation of
rater performances (Commowick et al., 2012; Asman and Landman, 2012)
or the fusion of probabilistic decisions (Akhondi-Asl and Warfield, 2013).

2.4. Refinement of image segmentations

The segmentation estimates obtained by multi-atlas label fusion, as de-
scribed in the previous Section 2.3, can be further improved. In the following
two successful strategies to the refinement of image segmentations are pre-
sented: the refinement of segmentations based on image intensities and the
refinement based on classifiers that were trained to correct systematic bias
of a segmentation method.

2.4.1. Intensity-based refinement

The probabilistic segmentation estimates, Ptgt, obtained by automatic label
fusion techniques (cf . Section 2.3) can be refined based on the image inten-
sities of Itgt. It was shown that modifying image segmentations based on
the actual image intensities can substantially improve segmentation results
(van der Lijn et al., 2008; Wolz et al., 2009; Lötjönen et al., 2010; Ledig
et al., 2015).

Using Bayes’ theorem the refinement task is often modelled as calculating
the maximum a posteriori (MAP) estimate as:

Ltgt = argmax
L

p(L|Itgt) = argmax
L

p(Itgt|L)p(L)
p(Itgt)

= argmax
L

p(Itgt|L)p(L)

(11)
Assuming voxel-wise independence the image likelihood, p(Itgt|L) can be

calculated as
QN

i=1
p(yi|li) where p(yi|li) is given by a predefined intensity

model. The probability of a segmentation, p(L), is often modelled based on
spatial prior knowledge and smoothness constraints between adjacent labels.
Since the target image is fixed, the optimisation problem is independent of
p(Itgt).

Two popular approaches to solve the optimisation problem stated in Equa-
tion 11 are based on graph-cuts (GC) (Greig et al., 1989; Boykov et al., 2001;
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van der Lijn et al., 2008; Wolz et al., 2009) or the expectation-maximisation
(EM) algorithm (Van Leemput et al., 1999; Lötjönen et al., 2010; Ledig
et al., 2015).

Expectation-maximisation optimisation

The widely used EM-optimisation was presented for image segmentation
by Van Leemput et al. (1999). For the sake of consistency with existing
literature, in the following paragraph the notation is employed that was also
used in Van Leemput et al. (1999); Cardoso et al. (2011); Ledig et al. (2015).

Based on a Gaussian mixture model (GMM) it is assumed that given the in-
tensity characteristics � = {(µ1,�1), (µ2,�2), . . . , (µK ,�K)} of K structural
classes the likelihood of observing intensity yi at voxel i is given as:

f(yi|�) =
X

k

f(yi|zi = ek,�)f(zi = ek) (12)

Here it is assumed that the probability of a voxel i to have intensity yi,
f(yi|zi = ek,�), given that it belongs to class k, (zi = ek), is described
by a normal distribution (Wells III et al., 1996; Van Leemput et al., 1999;
Zhang et al., 2001; Cardoso et al., 2011; Ledig et al., 2015). Thus f(yi|zi)
is modelled as f(yi|zi = ek,�) = Gk(yi) where Gk denotes the Gaussian
distribution with corresponding parameters (µk,�k). The prior probability
f(zi = ek) that a voxel i belongs to structure k is given by the probabilistic
label estimates after multi-atlas label propagation, Pprior

tgt
(cf . Section 2.3).

By assuming that voxels are statistically independent, the probability of
observing the complete image Itgt, given that the model parameters � are
known in iteration m, is given by f(Itgt|�(m)) =

Q
i f(yi|�(m)). In the EM

approach this model is solved by interleaving the expectation of the proba-

bilities of each voxel i to belong to structure k, p(m)

ik , and the maximisation
of the model by updating the model parameters �(m). It is assumed that

the probabilities, p(m+1)

ik , are known in iteration (m+ 1), so that the model
parameters, �, can be updated as:

µ(m+1)

k =

PN
i=1

p(m+1)

ik yi
PN

i=1
p(m+1)

ik

, �(m+1)

k =

vuut
PN

i=1
p(m+1)

ik (yi � µ(m+1)

k )2
PN

i=1
p(m+1)

ik

(13)
Given the updated model parameters the estimate of the class probabilities
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in the next iteration is given as:

p(m+1)

ik =
f(yi|zi = ek,�(m))f(zi = ek)PK

k0=1
f(yi|zi = ek0 ,�(m))f(zi = ek0)

(14)

Usually the model converges after a few iterations.

Smoothness of the final segmentation can be enforced with a global and sta-
tionary MRF, which can be integrated using the mean field approximation
(Zhang, 1992), following the example of Van Leemput et al. (1999), Cardoso
et al. (2011) or Ledig et al. (2015). This also allows the incorporation of
topological knowledge next to the spatial information provided by the prior
estimates. The MRF energy function is usually calculated based on the
probabilistic label estimates in iteration m, in the first-order neighbourhood
of each image voxel. A connectivity matrix, G of size K⇥K, can be defined
that describes the connectivity between class k and j. Usually G is defined
as:

G(k, j) =

8
><

>:

0, if k = j

�, if structures k and j share a boundary

�, if structures k and j are distant

(15)

Here � and �, with 0  �  �, are parameters describing the penalty for
certain neighbourhood configurations.

Images of substantially deformed or abnormal brains pose great challenges
to the label fusion techniques described in Section 2.3 as the atlas images are
di�cult to align due to e.g . existing pathology in the target. This results in
inaccurate spatial a-priori information limiting the potential of refinement
techniques based on intensities. It was shown that explicitly relaxing the
spatial priors Pprior

tgt
based on image intensities can substantially improve

segmentation results (Cardoso et al., 2011; Ledig et al., 2015). In Ledig et al.
(2015), the authors proposed a method called Multi-Atlas Label Propagation
with Expectation-Maximisation based refinement (MALP-EM) with a prior
relaxation technique to successfully segment abnormal MR images.

Graph-cut optimisation

The optimisation problem in Equation 11 can be rewritten (Greig et al.,
1989; van der Lijn et al., 2008) as a minimisation problem by taking the
negative logarithm as:

Ltgt = argmin
L

(� ln p(Itgt|L)� ln p(L)) = argmin
L

(Eintensity(L) + Eprior(L))

(16)
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This amended formulation allows the definition of a network graph for
which a minimum cut can be calculated based on the Ford-Fulkerson max-
flow/min-cut algorithm (Greig et al., 1989). In Equation 16 the intensity (or
data) term, Eintensity(L) = �

PN
i=1

ln p(yi|li), quantifies the agreement of the
image data, Itgt, with the intensity model. A common choice for the inten-
sity model of p(yi|li) is a Gaussian probability distribution with label-specific
parameters (µli ,�li) (van der Lijn et al., 2008; Wolz et al., 2010b). The sec-
ond term, Eprior(L), incorporates both spatial prior information provided
through the probabilistic segmentation estimates (e.g . obtained through la-
bel fusion) and smoothness constraints which are often modelled through
MRFs (van der Lijn et al., 2008; Wolz et al., 2010b). The cost function that
is minimised by GC can then be summarised as:

E(L) = �
NX

i=1

ln p(yi|li)
| {z }

Eintensity

�
NX

i=1

ln p(li)

| {z }
Espatial prior

+
NX

i=1

X

j2Ni

G(li, lj)

| {z }
Esmoothness prior

(17)

Here p(li) is the prior probability that voxel i has label li. It can be calcu-
lated using label fusion (cf . Section 2.3) so that p(li) = pi(li). Furthermore
Ni is the set of voxels neighbouring voxel i and as in Equation 15 G(li, lj)
penalises non-smooth label configurations (G(li, lj) > 0 for li 6= lj). The
individual energy terms can be multiplied with weighting factors to control
their individual contribution (Song et al., 2006; van der Lijn et al., 2008;
Wolz et al., 2010b).

GC optimisation was first introduced for binary segmentation problems
(Greig et al., 1989; Boykov et al., 2001; Boykov and Kolmogorov, 2004)
for which a global optimum can be found. However, the optimisation prob-
lem can also be formulated as a multiway cut problem and employed for
the segmentation of multiple labels (Boykov et al., 2001; Boykov and Kol-
mogorov, 2004; Song et al., 2006). For multiway cut problems, Boykov
et al. (2001) presented an algorithm that e�ciently calculates approximate
solutions of the global minima with optimality bounds. GC optimisation
typically assigns one strict label to each voxel.

Based on GC, Wolz et al. (2010b) proposed a framework to measure longi-
tudinal changes by building a four-dimensional (4D) graph based on edges
between both spatially and temporally neighbouring voxels.
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2.4.2. Learning-based refinement

Learning-based refinement is based on the assumption that a substantial
fraction of falsely labelled image voxels is due to systematic bias of the em-
ployed segmentation method (Wang et al., 2011). Systematic bias often
originates in di↵erent definitions of manual segmentation protocols or inac-
curate translation of the manual protocol to the automatic method (Wang
et al., 2011). The assumption made by Wang et al. (2011) is similar to
the one made by Heckemann et al. (2006): In the work by Heckemann
et al. (2006) the authors described segmentation inaccuracies in the context
of multi-atlas label propagation as a combination of random variability of
propagated labels and systematic errors.

The main contribution of Wang et al. (2011) is the proposal to explicitly
learn systematic segmentation errors with respect to reference segmentations
using machine learning.Specifically, features based on image intensities and
label context are extracted in a local neighbourhood of each voxel and com-
bined with spatial information. These features are subsequently employed to
train error detection and error correction classifiers using AdaBoost (Freund
and Schapire, 1995) with respect to reference segmentations (Wang et al.,
2011). These classifiers have been shown to allow a significant reduction of
systematic bias in the context of many applications. In the original work,
Wang et al. (2011) presented substantial improvements when the method is
employed to correct automatically calculated hippocampus segmentations,
brain masks and brain tissue segmentations.

A schematic illustration of the method is provided in Figure 6. More details
on learning-based refinement can be found in Wang et al. (2011).

2.5. Remarks

Recently several segmentation challenges were held in conjunction with in-
ternational conferences. The methods with particularly good performance
for segmenting brain data were often based on JLF (cf . Section 2.3.5) and
corrected for systematic segmentation bias (cf . Section 2.4.2) (Landman and
Warfield, 2012; Asman et al., 2013).

The careful design and implementation of each individually outlined building
block, brain extraction, atlas alignment, label fusion, label refinement, is
essential and critical to realise a segmentation approach that is both accurate
and robust. Failure or inaccuracies within a single of these ’modules’ is likely
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Figure 6: Schematic process of training classifiers for the detection and correction of
systematic segmentation bias. This illustration corresponds to the variant named explicit
bias correction in Wang et al. (2011). Note that for binary segmentation tasks the error
detection and error correction classifiers are identical. Illustration adapted and modified
from Wang et al. (2011).

to negatively impact the final segmentation result. It is tempting to consider
each of these blocks separately to reduce the complexity of the task. This
further allows the independent implementation, tuning and validation of
each module. It should be mentioned, however, that there is some evidence
that more complex approaches that model and solve several building blocks
jointly (e.g . registraion and segmentation) can increase accuracy (Ashburner
and Friston, 2005). Nevertheless, in practice the theoretical advantages of
these joint models might be outweighed by the above-mentioned merits of a
modular approach.

3. Brain atlases from MR images

Atlases of the human brain can be considered as maps that associate a spa-
tial position within the brain with structural or functional information such
as a specific anatomical structure. Early brain atlases were created based
on a single subject or a small number of selected subjects (Mazziotta et al.,
1995). While these early atlases provided great insight into brain anatomy
they were limited in their ability to represent the large intersubject variabil-
ity of the human brain. To address this problem, probabilistic population
atlases were created from a population of brain images that were aligned
with and segmented in a common reference or so-called stereotaxic space,
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e.g . in Shattuck et al. (2008).
Popular stereotaxic spaces are given by the MNI-3051 (Evans et al., 1993)
and the MNI-1522 (Mazziotta et al., 1995)) brain templates, which are
available through the Montreal Neurological Institute (http://www.mni.
mcgill.ca/) (MNI). Both templates were created by averaging the con-
tributing MR intensity images (305, and 152 respectively) in a common
space after linear image registration (Evans et al., 1993; Mazziotta et al.,
1995). The MNI-152 template was built by the International Consortium
for Brain Mapping (ICBM) from images acquired with better contrast and
at a higher resolution than the images on which the MNI-305 template is
based2. The stereotaxic spaces described by these template images can serve
as target to align individual atlases of an atlas database (Hammers et al.,
2003; Shattuck et al., 2008), such as the ones described in this section. The
propagated atlas labels can then be averaged using label fusion techniques
(cf . Section 2.3) to create a probabilistic brain atlas. In must be noted
that the characteristics of the resulting probabilistic atlas, such as spatial
variability of individual structures, directly depends on the chosen template
space (e.g . MNI-305, MNI-152) and the registration approach (e.g . a�ne or
nonrigid transformation model). As a consequence, based on atlas databases
such as the ones described in the following a variety of probabilistic atlases
can be created that can be tailored to a particular application.
A broader description and history of atlases of the human brain can be found
in Mazziotta et al. (1995); Shattuck et al. (2008).

In this chapter the focus is, however, on non-probabilistic brain atlases that
can be aligned with a specific target image. As many individual brain atlases
need to be aligned this approach is computationally more expensive than
the alignment with a single atlas only. However, accuracy of the estimated
target segmentation can be substantially improved based on subject-specific
atlases created using label fusion (cf . Section 2.3).

In the following, five publicly available non-probabilistic brain atlases based
on T1-weighted MR images are introduced. The reviewed brain atlases
were selected because they are widely used, publicly available, and contain
manually annotated anatomical labels for both cortical and non-cortical
structures. An overview over key characteristics of these atlases is given
in Table 2.

1
http://www.bic.mni.mcgill.ca/ServicesAtlases/MNI305

2
http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152Lin
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However, next to this selection of brain atlases there are alternatives avail-
able. For example, Klein et al. (2009) employed next to the IBSR18 (cf . Sec-
tion 3.2) and LBPA40 (cf . Section 3.4) atlases, the CUMC123 and MGH103

brain atlas to evaluate 14 established registration algorithms. Furthermore,
Klein and Tourville (2012) recently created a detailed protocol to label hu-
man cortices. Based on this protocol MR images from 101 healthy par-
ticipants, with origins in nine di↵erent publicly available data sets, were
segmented. The expert labels for all images3 (page 25) were obtained by
manually editing label maps that were calculated using FreeSurfer (http:
//surfer.nmr.mgh.harvard.edu/, Fischl and Dale (2000); Fischl et al.
(2002, 2004)) (FreeSurfer) to correspond with the protocol.

3.1. AAL atlas

The Automated Anatomical Labeling (AAL) brain atlas4 (Tzourio-Mazoyer
et al., 2002) distinguishes 116 ROIs and is based on a single MR template
image with a resolution of 1 mm ⇥ 1 mm ⇥ 1 mm. The template5 was
obtained by averaging 27 T1w MR scans of a male individual to increase
the signal to noise ratio (SNR) (Holmes et al., 1998; Tzourio-Mazoyer et al.,
2002). The MR template was then segmented manually into distinct ROIs
based on two-dimensional (2D) axial slices. The ROIs were outlined only
on every second axial slice (Tzourio-Mazoyer et al., 2002). The atlas seg-
mentations available for download4 are, compared to the MR template, of a
lower resolution of 2 mm ⇥ 2 mm ⇥ 2 mm. The AAL atlas was constructed
with a focus on measuring activation patters within the defined ROIs in
functional imaging. To avoid missing some structure-related activity due
to a too conservative definition of ROIs and to account for inter-subject
variability, structures were outlined quite generously, even beyond the GM
boundary (Tzourio-Mazoyer et al., 2002).

In total the template is divided into 116 anatomical structures including
the cortical gyri but also the hippocampus, sub-cortical structures such as
amygdala, caudate nucleus, putamen, pallidum, thalamus and 26 labels sub-
dividing the cerebellum (Tzourio-Mazoyer et al., 2002). Structures in the
left and right hemisphere are treated separately. Ventricles were not seg-
mented. The visualisation of the atlas in Figure 7 clearly shows the generous

3available at http://mindboggle.info/
4
http://www.gin.cnrs.fr/spip.php?article217

5
http://www.bic.mni.mcgill.ca/ServicesAtlases/Colin27Highres
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Figure 7: The AAL atlas in axial (left), coronal (middle) and sagittal (right) view view
planeplane. T1w MR template with overlaid segmentation contours in a colour scheme
that provides a good contrast between adjacent labels. The cross-hair in the axial view
indicates the position of the illustrated coronal and sagittal slice.

definition of ROIs including more than one tissue type.

3.2. IBSR18 atlas

The Internet Brain Segmentation Repository (IBSR) V2.06 atlas consists
of T1w MR images acquired from 18 subjects (14 male / 4 female, mean
age [min; max] of 14 subjects 38 years [7; 71]7). The slice thickness of all
images is 1.5 mm. However, the in-plane resolution varies from 0.8371 mm
⇥ 0.8371 mm to 1 mm ⇥ 1 mm. All images were positionally normalised by
rotating the images into the Talairach orientation. Expert segmentations of
34 anatomical structures8 were created manually.

The annotated structures include for example hippocampus, amygdala, cau-
date, pallidum, putamen, thalamus, inferior lateral ventricle, lateral ventri-
cle. The cerebellum is split into cerebellum cortex and cerebellum white
matter (WM). Structures in the left and right hemisphere are discriminated.
Cortical annotations include cortical GM only. An example of a subject of
the IBSR atlas is illustrated in Figure 8.

6
http://www.nitrc.org/projects/ibsr

7No exact age provided for four subjects.
8The readme file describes 39 anatomical structures. In contrast to this description

labels for cerebral exterior (left/right), cerebellum exterior (left/right) and amygdala an-
terior (left/right) are missing while CSF is an additional label not mentioned in the de-
scription (39� 6 + 1 = 34).
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Figure 8: An example of a subject (IBSR01, male, 37 years) of the IBSR atlas in axial
(left), coronal (middle) and sagittal (right) view plane. T1w MR template with overlaid
segmentation contours in a colour scheme that provides a good contrast between adjacent
labels. The cross-hair in the axial view indicates the position of the illustrated coronal
and sagittal slice.

3.3. Hammers atlas

The Hammers brain atlas9 (Hammers et al., 2003, 2007; Gousias et al.,
2008) consists of 30 T1w MR images with corresponding segmentations
distinguishing 83 ROIs. The images were acquired from young healthy
adults (15 male/female, median age [min; max] of all subjects 31 years
[20; 54]) and resliced to an isotropic resolution of 0.9375 mm ⇥ 0.9375
mm ⇥ 0.9375 mm (Hammers et al., 2003; Gousias et al., 2008). All im-
ages were acquired at 1.5Tesla (T) with the same scanner (Gousias et al.,
2008). Originally, Hammers et al. (2003) annotated 49 distinct anatomi-
cal regions of 20 subjects. Delineations were done in native space. This
work was subsequently extended to 30 subjects and by further subdivid-
ing the 49 regions into a total of 83 ROIs (Hammers et al., 2007; Gousias
et al., 2008). Following a well defined protocol (Hammers et al., 2003),
the MRIs were manually annotated on 2D slices in structure-specific orien-
tations. Subsequent control of di�cult cases was conducted by a trained
specialist (Hammers et al., 2003). An intra-rater reliability study indi-
cates good reliability (Hammers et al., 2007). Hammers et al. (2003) fur-
ther created a probabilistic brain atlas by aligning the individual segmenta-
tions to the MNI-1522 (page 24) template space using Statistical Parametric
Mapping (http://www.fil.ion.ucl.ac.uk/spm/, Ashburner and Friston
(1997, 1999, 2005)) (SPM).

9
http://biomedic.doc.ic.ac.uk/brain-development/index.php?n=Main.Adult
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Figure 9: An example of a subject (a01) of the Hammers atlas in axial (left), coronal
(middle) and sagittal (right) view plane. T1w MR template with overlaid segmentation
contours in a colour scheme that provides a good contrast between adjacent labels. The
cross-hair in the axial view indicates the position of the illustrated coronal and sagittal
slice.

Each of the 30 MRIs is divided into 83 ROIs subdividing the cortex, ventri-
cles and non-cortical structures such as the hippocampus, amygdala, caudate
nucleus, pallidum, putamen, thalamus. There is no finer separation within
the cerebellum. Structures in the left and right hemisphere form separate
ROIs. grey matter (GM) and white matter (WM) are combined in one com-
mon label for most cortical ROIs (Hammers et al., 2003). An example of a
subject of the Hammers atlas is illustrated in Figure 9.

3.4. LPBA40 atlas

The LONI Probabilistic Brain Atlas (LPBA)10 consists of T1w MR images
acquired from 40 healthy volunteers (20 male/female, mean age [min; max]
of all subjects 29.2 years [19; 39]) (Shattuck et al., 2008). All images were
acquired at the same scanner at 1.5T and subsequently rigidly aligned to the
MNI-3051 (page 24) (Evans et al., 1993) template space. Images were further
resampled to an isotropic resolution of 1 mm⇥ 1 mm ⇥ 1 mm (Shattuck
et al., 2008). Manual delineation of the images into 56 distinct ROIs was then
performed in template space following a detailed protocol (Shattuck et al.,
2008). Rater-reliability was assessed. Several versions of a probabilistic atlas
were produced by employing di↵erent techniques (e.g . SPM) to nonrigidly
align the individual segmentations to the MNI-305 template space (Shattuck
et al., 2008). However, the individual 40 annotated non-probabilistic atlases

10
http://www.loni.usc.edu/atlases/Atlas_Detail.php?atlas_id=12
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Figure 10: An example of a subject (S01) of the LPBA atlas in axial (left), coronal
(middle) and sagittal (right) view plane. T1w MR template with overlaid segmentation
contours in a colour scheme that provides a good contrast between adjacent labels. The
cross-hair in the axial view indicates the position of the illustrated coronal and sagittal
slice.

are available.

The atlas distinguishes hippocampus, caudate, putamen, cerebellum and
brainstem but mainly parcellates cortical ROIs (Shattuck et al., 2008).
Amygdala, pallidum and thalamus are absent. There is no finer separa-
tion within the cerebellum. Structures in the left and right hemisphere
form individual ROIs. Cortical structures potentially contain WM that lies
between sulci or in the vicinity of cortical GM (Shattuck et al., 2008).An
example of a subject of the LPBA atlas is illustrated in Figure 10.

3.5. NMM atlas

The Neuromorphometrics (NMM) brain atlas11 consists of a continuously
growing number of manually annotated T1w MR brain images (Worth and
Tourville, 2013). The currently available annotated images can be obtained
with an academic license for an annual fee. Recently, a subset of 35 images
was used as ’gold standard’ and was made freely available in the course of the
“MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling”
(Landman and Warfield, 2012). In the following a description of these 35
images is provided.

The 35 images were taken from the Open Access Series of Imaging Studies
(OASIS) database and acquired from 30 individuals (Marcus et al., 2007).

11
http://www.neuromorphometrics.com/
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Repeat scans were acquired of five of the subjects in a second session within
90 days of the original scan (Marcus et al., 2007). All images were acquired
at 1.5T at the same scanner (Marcus et al., 2007). Images from the OASIS
database were corrected for bias field inhomogeneities and positionally nor-
malised12. The MR images with corresponding segmentations are resampled
to a resolution of 1 mm ⇥ 1 mm ⇥ 1 mm. A description of relevant subsets
including information on gender and age is provided in Table 3.

Table 3: Overview of relevant NMM subsets with respective age and gender information.
Definition of TRAINING and TEST set as used in the MICCAI 2012 Grand Challenge.

subset # of images / subjects gender (# male / # female) age (mean [min; max])
COMPLETE 35 / 30 10 / 20 34.3 [18; 90]
ATLAS 30 / 30 10 / 20 34.3 [18; 90]
REPEAT 10 / 5 2 / 3 24.6 [20; 29]
TRAINING 15 / 15 5 / 10 23 [19; 34]
TEST 20 / 15 5 / 10 45.7 [18; 90]

The manual segmentation into 138 anatomical structures has been carried
out by experts13 according to publicly available protocols14. All manual
segmentations were quality controlled by another expert12 (page 31). As sug-
gested by Landman and Warfield (2012), the small regions “vessel” and
“cerebral exterior” were excluded in both the left and the right hemisphere.
Thus the atlas comprises e↵ectively 134 ROIs of which 36 are non-cortical
and 98 cortical. The non-cortical structures comprise several ROIs such
as amygdala, caudate nucleus, hippocampus, pallidum, putamen, thalamus.
The cerebellum is subdivided into WM, cerebellum exterior and the cerebel-
lar vermal lobules. Cortical ROIs contain a single tissue type (cortical GM)
only. Without any further subdivision, cerebral WM is pooled together in
one ROI for the left and right brain hemisphere respectively. The 134 ROIs
contain 63 distinct anatomical structures which have symmetric counter-
parts in their opposite hemisphere, in total 126 paired ROIs. The remaining
eight unpaired structures are: 3rd ventricle, 4th ventricle, brain stem, CSF,
optic chiasm, cerebellar vermal lobules I-V, cerebellar vermal lobules VI-
VII, cerebellar vermal lobules VIII-X. Examples of brain MR images of a
young male subject (20 years) and a rather old female subject (90 years) is

12
http://www.neuromorphometrics.com/wp-content/uploads/2013/07/

DescriptionofLabeledScans.pdf

13provided by Neuromorphometrics, Inc. (http://Neuromorphometrics.com/) under
academic subscription.

14
http://www.cma.mgh.harvard.edu/manuals/segmentation/ and http://www.

braincolor.org
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Figure 11: Two examples of subjects of the NMM atlas in axial (left), coronal (middle) and
sagittal (right) view plane. T1w MR images of a male subject aged 20 years (OAS1 0285,
top) and a female subject aged 90 years (OAS1 0083, bottom) with overlaid segmentation
contours in a colour scheme that provides a good contrast between adjacent labels. The
cross-hair in the axial view indicates the position of the illustrated coronal and sagittal
slice.

illustrated with overlaid manual segmentation outlines in Figure 11.

4. Conclusions

In this chapter we have reviewed several approaches for the semantic segmen-
tation of brain MR images. These approaches are nearly always atlas-based
segmentation techniques that can fully make use of a-priori knowledge that
is encoded in the atlases. The large number of di↵erent techniques in this
area demonstrates that this is still an active area of research. The perfor-
mance of current state-of-the-art techniques is starting to approach that of
human observers in terms of accuracy. However, the robustness of current
approaches is not yet comparable to human observers. This is especially
true in cases where pathologies are present in the MRIs that are not present
in the atlases.
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