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ABSTRACT

We propose a consistent approach to automatically segmenting lon-
gitudinal magnetic resonance scans of pathological brains. Using
symmetric intra-subject registration, we align corresponding scans.
In an expectation-maximization framework we exploit the availabil-
ity of probabilistic segmentation estimates to perform a symmet-
ric intensity normalisation. We introduce a novel technique to per-
form symmetric differential bias correction for images in presence
of pathologies. To achieve a consistent multi-time-point segmenta-
tion, we propose a patch-based coupling term using a spatially and
temporally varying Markov random field. We demonstrate the su-
perior consistency of our method by segmenting repeat scans into
134 regions. Furthermore, the approach has been applied to segment
baseline and six month follow-up scans from 56 patients who have
sustained traumatic brain injury (TBI). We find significant correla-
tions between regional atrophy rates and clinical outcome: Patients
with poor outcome showed a much higher thalamic atrophy rate
(4.9 & 3.4%) than patients with favourable outcome (0.6 &= 1.9%).

Index Terms— brain MRI, longitudinal segmentation, EM op-
timisation, temporal consistency, traumatic brain injury

1. INTRODUCTION

The worldwide incidence of traumatic brain injury (TBI) cases is
estimated at 6.8 million annually, representing a substantial public
health burden [1]. Although the need for reliable assessment tools
was already expressed 30 years ago [2], prognostic assessment re-
mains a challenge, and standardised models to predict outcome of
patients with moderate TBI remain unavailable [1]. To assist the de-
velopment of such models, an accurate assessment and understand-
ing of the structural changes happening during and after TBI is cru-
cial. In [3] indications for brain volume loss following a TBI have
been identified using tissue segmentation techniques on structural
magnetic resonance (MR) scans and diffusion tensor imaging.
Several methods have been published that address the problem
of quantifying brain changes over time based on MR scans. One
popular representative is “CLASSIC” [4], a method that uses adap-
tive clustering for tissue segmentation of MR scans taken at multiple
time-points. Another longitudinal segmentation method, presented
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by Lorenzo et al. [5], is based on expectation-maximization (EM)
optimisation and applied to 4D cardiac sequences. This asymmetric
approach uses stationary temporal Markov random fields (MRF) and
affine alignment with a probabilistic spatiotemporal atlas.

Several other methods have been proposed that address primar-
ily brain tissue segmentation such as [6] which uses level sets. Wolz
et al. [7] simultaneously segment the hippocampus of longitudinal
scans using graph cuts. Recent research suggests that a fully sym-
metric process can significantly reduce bias, e.g. in atrophy measure-
ment [8]. In addition the advantages of a longitudinal segmentation
of several time points over multiple, single time point segmentation
are well established [4, 7].

In this work we propose a novel method based on [9] for con-
sistent segmentation of serial images into many anatomical regions,
rather than tissue classes. Different from previous methods, we per-
form image alignment, intensity normalisation and differential bias
field correction in a symmetric fashion. To achieve consistency, we
present an approach to perform differential bias field correction in
the presence of significant pathology in the images. We further in-
troduce a novel way to determine a spatially and temporally varying,
fully data driven temporal coupling of the longitudinal segmentation
based on MRF. To our knowledge, our method is the first consis-
tent segmentation approach that segments longitudinal whole-brain
scans into a large number of anatomical structures while being robust
to pathology. Our experiments show quantitative evidence for im-
proved segmentation consistency while maintaining high accuracy.
We also demonstrate on a cohort of TBI patients that the proposed
method is robust and has the potential to quantify imaging biomark-
ers, specifically atrophy, that correlate well with clinical outcome.

2. METHOD

2.1. Spatial priors and symmetric longitudinal image alignment

Assuming preprocessed, brain extracted and bias corrected images
we derive subject specific probabilistic labels from M available at-
lases using a multi-atlas label propagation approach. For the un-
segmented images at n time points, I* at ¢ = 0...n — 1, we cal-
culate individual transformations ¢f,, m = 1... M by registering
M manually labelled atlases to I*. For the image alignment, we
employ MAPER [10], an approach that incorporates tissue proba-
bility maps into the registration and relies on a non-rigid registration



based on free-form deformations (FFD) [11, 12]. Using the resulting
transformations we map the M label maps to the space of image I°
and create, for each time point ¢, a probabilistic atlas using a locally
weighted multi-atlas fusion strategy based on a Gaussian weighted
sum of squared differences (GSSD). In the following, 7}, denotes
the probabilistic prior for label k at voxel ¢ and at time point ¢.

As shown in [8, 13], asymmetric image registration can intro-
duce significant bias into longitudinal image analyses. We thus
choose a symmetric registration setup, 6 degree-of-freedom global
rigid registration similar to [13], and transform images, I*, and
priors, 7*, of all time points, to a common intermediate space [8].

2.2. 4D EM segmentation

We then estimate the probabilistic segmentation of the aligned multi-
time-point scans, residing in their common rigid intermediate space,
simultaneously. Based on the subject and time-point specific priors,
we employ a 4D extension of the EM algorithm [9], which was orig-
inally presented by van Leemput et al. [14]. We employ separate
Gaussian distributions, described by ®*, for each time point. Spatial
smoothness of the final segmentations is enforced through a global
and stationary MRF [15]. To also enforce longitudinal consistency,
we propose novel spatially and temporally varying constraints that
are dependent on the patch similarity between voxels. This enables
us to formulate the strength of the temporal coupling as a function
of the local intensity similarity of the aligned images. This is crucial
both to allow for flexibility in pathological regions and to enforce
consistency in regions with no or very little change. We assume a
Gaussian mixture model for the probability of observing an inten-
sity 9! at a voxel 4 at time point ¢
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where N; is the set of first-order neighbours of voxel 4, k a label
index and 2! the labelling of voxel i at time point .

We represent a MRF energy Uwmrr that is dependent on the prob-
abilistic label estimates p at iteration q as:
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Here G denotes a K x K matrix defining the connectivity between
class k£ and j. The column vector v of size K denotes the accumu-
lated class probabilities in the 8-neighborhood N; of voxel 7. The
class probabilities of adjacent time points are weighted by tempo-
ral weighting factors, fyt L The following sections describe the
symmetric intensity normalisation, the calculation of 7: £ and the
differential bias correction. These steps are performed once in the
given order after the first EM steps.
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2.3. Intensity normalisation

To enable an accurate comparison of corresponding patches at dif-
ferent time points, we employ a symmetric intensity normalisation.
We perform this normalisation based on the probabilistic segmenta-
tion estimates obtained in the first EM steps. Based on these current
probabilistic label estimates, we calculate for multiple time points n
the mean intensities u’ (s = 1...5) for the five global structures
white matter (WM), deep grey matter (dGM), cortical grey mat-
ter (cGM), ventricles (vent), background/cerebrospinal fluid (CSF).

Mean intensity values for these five “super structures” are obtained
by merging the labels of the individual structures of which they are
composed. We then estimate all ;% based on fuzzy label estimates
and normalise corresponding structures at all time points n symmet-
rically. Specifically, we normalise intensities at time point ¢ and from

super structure s with ¥/TT,_, ., pb/pt. Again, we consider the

voxel-wise probabilistic label estimates when normalising the inten-
sity of a certain voxel.

2.4. Voxel-wise pathology index for temporal coupling

To reduce segmentation bias, we propose coupling the segmentation
of corresponding images from multiple time points through a spa-
tially and temporally varying MRF. While the spatial MRF weights
are stationary, we determine the temporal weights based on the sim-
ilarity of temporally adjacent intensity normalised images. At time
point ¢t we calculate local patch similarities between time point ¢ and
t+ 1, ort and ¢t — 1 respectively. Specifically, we calculate the
Gaussian weighted sum of absolute differences (GSAD) where the
kernel width determines the “patch size”. From the GSAD value at
a given voxel wt 1 we derive the pathology indices 'yf 1 for the
temporal couphng based on a logistic function of the form:
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Here ¢ determines the maximal value of ; while a and b determine
the shape of the S-curve. %t %1 s close to ¢ in areas where the data
suggests no presence of pathologies or significant structural changes

(small w;) and close to 0 otherwise.

2.5. Differential Bias Correction

Lewis et al. [16] propose a straightforward way to estimate the dif-
ferential bias fields of aligned longitudinal image pairs by apply-
ing a median filter to the difference image, calculated between log-
transformed images. This approach is extended in [8] to multiple
time points. However, the basic assumption of this approach, that
the differential bias field is given as the low frequency component of
the difference image, does not hold for pathological images. A vio-
lation of this assumption is exemplified by the image pair in Figure
1. Here, significantly enlarged ventricles or pathological changes ap-
pear as low frequency intensity change and are thus falsely regarded
as bias field by the approach presented in [8, 16].

We present a novel way to adapt bias field estimation that in-
creases robustness towards pathologies. We extend the formulation
presented in [8] and estimate pairwise differential bias fields dbf;ofy,
for time points ¢, ¢’, based on a polynomial model. After estimating
a differential bias field dbf**" based on the difference image, we fita
second order polynomial to dbf*?’ using weighted least squares op-

timisation to calculate dbfgoﬁy As weights we exploit the quantities

~ that were previously derived from patch similarities. Employing
the pathology indices -, we can reduce the influence of pathological
areas to the bias field estimation. We then perform a symmetric bias
field correction similar to [8] using all pairwise estimates dbfsoiy

3. EXPERIMENTAL RESULTS

3.1. Material and Parameters

As atlases we used the data set provided as part of the “MICCAI
2012 Grand Challenge and Workshop on Multi-Atlas Labeling”. It



consists of 35 T7-weighted MR brain images with isotropic voxel
sizes of 1 X 1 x 1 mm from the OASIS database [17]. The cor-
responding 134 anatomical labels have been created manually by
experts.! The scans have been acquired from 30 subjects (20 female,
10 male, mean+SD age: 34.31+20.7 years) where 5 subjects have
been scanned twice. The duplicates were acquired within 90 days of
the original scan [17].

In a novel data cohort of patients who had sustained TBI, we seg-
mented 56 intra-subject pairs of MR brain scans acquired six months
apart (mean 6.7£1.2). Acquisition parameters were identical for all
TBI scans: resolution 240 x 256 x 170; spacing 1 X 1 X 1 mm;
sagittal slices.

We evaluate the proposed method in two ways: First, we eval-
uate consistency and accuracy in the 5 pairs of intra-subject repeat
scans. Second, we apply our method to the TBI cohort to evaluate
clinical relevance of the novel segmentations.

To segment all five pairs of repeat scans, which are part of the
atlas cohort, we used the subset of 15 atlases that served as training
data in the Grand Challenge. These M = 15 scans were distinct
from the 5x2 repeat datasets. For the segmentation of the TBI data
we used all M = 30 atlases, excluding the five repeat scans.

Parameters: Parameters were set mainly based on results from
previous experiments. For the GSSD in the locally weighted atlas
fusion we set ogssp = 2.5. As spatial MRF weights, we set entry
(k, k) of the connectivity matrix G to 0. Entry (k,j) was set to
1.0 if structures k and j shared a boundary, and to 1.5 otherwise.
For the logistic function in Sec. 2.4, we heuristically chose ¢ =
2.0 in the order of the spatial MRF weights, a = 100 and b =
5.0/median[w!**"]. b was modelled dependent on the median of the
occurring GSAD values w; (ogsap = 1.0) within the images. This
adapts the logistic function to different similarity levels of image
pairs in a data-driven fashion. As in [16], a median filter of kernel
size 5 was used to estimate the differential bias field.

3.2. Test-retest reliability

We employed the intraclass correlation coefficient (ICC) to quantify
test-retest reliability [18]. The ICCs for both manual and automated
segmentations are summarized in Table 1. Overall, the proposed
method yields a significantly higher ICC than the reference methods.

Table 1. ICC (mean4SD) based on label volumes averaged over 5
image pairs for all 36 subcortical and all 98 cortical regions obtained
manually, with MAPER, and our method without and with the tem-
poral constraints as described in Sec. 2.3-2.5. Bold = significantly
higher than others (paired, two-sided Student’s t-test, p < 0.005).

1cC manual | MAPER | no coupling | proposed
subcort. || .80+£.28 | .95+0.08 .96£.07 98+.03
cort. J78+£.25 | .95+0.09 .94+.07 98+.02

3.3. Subject-atlas label overlaps

Enforcing identical segmentations at both time points leads to high
ICC values, but high ICCs do not necessarily reflect a high segmen-
tation accuracy which needs to be assessed with measures of over-
lap. The accuracy of segmenting both time points with and without

Iprovided by Neuromorphometrics, Inc. under academic subscription
(http://Neuromorphometrics.com/).

Table 2. Average DC values comparing the proposed approach with-
out or with temporal constraints to the gold-standard segmentations
of the 10 images of the 5 pairs of repeat scans.

36 subcort. | 98 cort. | 134 structures
no coupling 81.5 72.5 74.9
temp. coupling 81.6 72.4 74.9

6 months atrophy [%]

GOS6-8

GOS 3-5

d) e)

thalamus )

Fig. 1. Visual results for a TBI subject (GOS=3) with significant
pathologies obtained with the proposed method. (a) 7%-weighted
baseline and (b) 7.9 month follow-up scan with overlaid segmenta-
tion, (c) temporal weights according to Eq. 3 (high weights in red),
(d) differential bias field estimated as presented in [16], (e) proposed
polynomial fitted bias field. (f) Boxplot of thalamic volume change
calculated with (black) / without (blue) the proposed temporal cou-
pling as described in Sec. 2.3-2.5 for GOS groups 3-5 vs. 6-8.

the temporal constraints was assessed quantitatively. Table 2 shows
overlap results based on the Dice coefficient (DC). We calculated the
DC on the 10 repeat scans by comparing to the gold standard. En-
forcing temporal consistency does not alter segmentation accuracy.

3.4. Longitudinal analysis of TBI patients

To evaluate the proposed method in a realistic setting, we determined
the size change of individual regions over time and assessed their
potential as biomarkers by comparison with a standard clinical out-
come score, the Glasgow Outcome Scale (GOS, [2]). We prepro-
cessed all 56 x2 TBI brain images using the N4 algorithm to correct
for intensity inhomogeneities [19] and employed an in-house method
for brain extraction. We then applied the method to the 56 image
pairs. Clinical GOS scores were available (GOS 3: 4 subjects, GOS
4: 3, GOS 5: 4, GOS 6: 11, GOS 7: 15, GOS 8: 19). Figure 1 shows
visual results calculated on one of the most pathological subjects.
As a preliminary experiment that underlines the potential of the
proposed method, we followed [2] and split the TBI subjects into
two groups with GOS 3-5 (severe or lower moderate disability) and
GOS 6-8 (upper moderate disability, good recovery). We calculated
atrophy rates for all 134 structures and employed a two-sided un-
paired Student’s t-test to identify structures for which the size change
rate was significantly different between the groups. We combined



paired structures appearing both in the left and right brain hemi-
sphere. The four most significant subcortical structures were tha-
lamus (p < 1079), lateral ventricles (p < 10~%), CSF (p ~ 0.001)
and pallidum (p ~ 0.01). Without temporal coupling group differ-
ences were far less marked, e.g. for the thalamus the significance
of the atrophy rate difference was only p ~ 0.05. Using MAPER
we were not able to detect significant group differences for thalamic
atrophy (p=0.65). The boxplot shown in Figure 1 illustrates the sub-
stantial reduction of the size of the thalamus (GOS 3-5: 4.9 + 3.4%
vs. GOS 6-8: 0.6 == 1.9%). In contrast, ventricles expand faster, due
to brain atrophy in more severely injured patients (19.6 4= 21.3% vs.
1.6 £ 9.0%). Such a clear group separation is crucial for outcome
prediction: we ran 1000 iterations of a 10-fold cross validation sepa-
rating GOS groups 3-5 and 6-8 based on thalamic atrophy using lin-
ear discriminant analysis (LDA). While the classification accuracy
without temporal coupling was 61% (Specificity: 66%, Sensitivity:
41%) we observed a high accuracy of 87% (88%, 82%) using the
proposed method with temporal coupling.

4. CONCLUSION

We have presented a novel method that enables the symmetric and
consistent segmentation of pathological serially acquired MR brain
images into a large number of anatomical structures. We found that
the segmentation consistency was significantly improved in com-
parison to manual and state-of-the-art procedures. By application
to a novel cohort of patients with TBI, we were able to show that
our method allows the derivation of more discriminative prognostic
markers in serial-imaging. Our findings also indicate the method’s
potential to assist in the challenging task of monitoring the develop-
ment of pathological conditions. In future work, we intend to inves-
tigate the potential of the derived metrics as markers of TBI disease
progression in greater detail. A further promising avenue is the in-
tegration of a deformation model to estimate the structural disease
progress over time.
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