Efficient Computation of Joint Histograms and
Normalized Mutual Information on CUDA
Compatible Devices

Christian Ledig’? and Christophe Chefd’hotel®

! Siemens Corporate Research, Princeton, NJ, U.S.A.
2 Friedrich-Alexander University, Erlangen-Nuremberg, Germany

Abstract. We present new strategies for a highly optimized joint his-
togram computation of large datasets on NVIDIA’s compute unified de-
vice architecture (CUDA) compatible graphics processor units (GPUs).
By applying novel techniques to an algorithm proposed in [1] and adapt-
ing it for joint histogram computation, a very efficient calculation of
the Normalized Mutual Information (NMI) is possible. This similarity
measure plays a major role in multimodal image registration. Since the
computation time of NMI is dominated by the calculation of the joint
histogram, the availability of a fast histogram computation is a key fac-
tor in designing computationally efficient registration methods. We show
that the applied optimizations result in a reduction of computation time
of up to 35% and of required memory by 50% for the calculation of
NMI compared to previously published GPU implementations. We also
demonstrate the impact of high performance joint histogram computa-
tion on practical registration tasks.

1 Introduction

The alignment of two images from different modalities is a fundamental task in
a variety of applications in interventional and diagnostic imaging.

For example, registration methods are used to combine functional Positron
Emission Tomography (PET) data with morphological Computed Tomography
(CT) images in oncology and cancer staging [2].

Image registration can be described as the process of estimating a geomet-
ric transformation (rigid or nonrigid) that aligns a “moving” image to a fixed
“reference” image. This task can be formulated as an optimization problem with
respect to a given cost function which measures the quality of the alignment.
The selection of the transformation model and the cost function is application
dependent and has a strong impact on the registration results as well as the
computation time.

For multimodal image registration tasks, cost functions based on statistical
similarity measures such as Mutual Information (MI) [2] and Normalized Mu-
tual Information (NMI) [3] have been proposed. These metrics are derived from
information theory, and are typically computed from joint histograms of image
intensity pairs.

Many clinical applications require fast, robust and highly accurate registra-
tion methods. When statistical similarity measures are used, it is then critical
to optimize histogram calculations.

One widely pursued approach to efficient (joint) histogram computation is to
employ GPUs. Although histogram computation is simple and trivial to imple-
ment on CPU, its efficient parallelization on a GPU [4] is a challenging task. As
discussed in [4], previously proposed approaches based on shader programming
rely on expensive preprocessing steps, such as sorting pixels by intensity value.
With NVIDIA CUDA [5] a new general purpose parallel computing architecture
was introduced in 2006. Its shared memory capability enables efficient solutions
on the GPU for more complex problems. Algorithms for histogram computation
on CUDA compatible devices were presented in [1], [4], [6], [7], [8], [9] and [10].

In [4], a very efficient 64 bin histogram computation was proposed and ex-
tended to 256 bins by simulating atomic intra-warp updates to the shared mem-
ory. In order to compute thousands of bins, this update mechanism was also
used in the first method presented in [1] (labeled Method1). This algorithm
lacks data independence, but it has the key advantage of low memory require-
ment and very good performance on real data. To overcome data dependence,
the second method described in [1] (Method2) ensures collision free updates.
This method requires the allocation of a full histogram for every thread in the
global memory, which results in additional memory requirement. Dependent on
the data, it also underperforms Method! for high bin ranges [1], which often
occur in joint histogram computations.

A new algorithm — named “sort and count” — was recently proposed in [6].
This algorithm possesses very good scaling with high bin numbers. For reason-
able joint histogram sizes around 75 x 75 bins this approach performs similar to
Method1.

A self-optimizing histogram algorithm was introduced in [7]. Because of the
very expensive preprocessing time of several seconds, this data dependent op-
timization does not meet our needs. In [8] an algorithm which sorts the image
by intensity values was presented. With sorted data, faster histogram computa-
tions are possible. However, in addition to high memory requirements because
of additional stored coordinates, the expensive preprocessing step (sorting) is a
major drawback.

In addition to these exact computations, very fast algorithms were proposed
in [9] and [10] to approximate histograms and MI. Our goal in this paper is to
use CUDA to provide an exact calculation that combines high accuracy with
significant speed ups.

In this paper, we present three new optimization strategies for histogram
computation in Section 2. We then present experimental results and evaluate the
impact of our novel optimizations on practical registration tasks in Section 3.
We conclude in Section 4.

2 Method

2.1 Problem Formulation

The choice of a suitable similarity measure is a critical part in image registration.
The measure MI, proposed in [2], is particularly robust and data independent.
This metric does not require a strong a priori knowledge on the content of the
registered images. MI can be defined as

MI(X,Y)=H(X)+H(Y) - HX,Y) (1)

where H(X) = =) px(x)logpx(z) is the marginal entropy and
HX)Y)=- Zmy pxy (z,y) logpxy (z,y) is the joint entropy.

This metric captures the statistical dependence between the intensity values of
an image pair. A normalized version of MI, called NMI, was introduced in [3]. It
tends to be more robust to variations of the overlap region between images and
is defined as
H(X)+ H(Y)
NMI(X,Y) = HX.Y) . (2)
To evaluate Eq. 1 or 2 an estimation of the marginal probability distributions
px(x) and py (y) and the joint probability distribution pxy (x,y) is necessary.
This is done by computing a joint histogram of the intensity pairs.
For two normalized images I,(-) (reference) and I,,(-) (moving) with intensity
values in [0.0, 1.0] the joint histogram with B, x B,, bins can be described as:

J(i,j) =) d(x) 3)

zel,

1if I(z) € [, 2] and L.(¢(x)) € [, L]

B B
0, otherwise

with o(z) = {

where ¢(z) is a geometric transformation applied to the moving image.

As shown in [9], joint histogram computation of B, x B,, bins is equivalent to
the computation of a single histogram with B; = B,B,, bins on I, by combining
the intensity values of the two original images such that,

_ Bu((B. =)L(z) + L.(¢(x)))
B, - 1

By >1. (4)

This new image, usually created in a preprocessing step, requires additional
memory. This can be problematic for the registration of large datasets.

2.2 Base Algorithm

Method1 discussed in [1] is a very efficient histogram computation method. There
are neither limitations of histogram bins nor a loss of accuracy by approximation.
In this paper we describe new optimization techniques for this algorithm.

When parallelizing histogram computations on GPU, the main bottleneck is
that different threads might compete by updating the same histogram bin. Even
if there is in general no “mutex” mechanism available in CUDAS3, a solution
was presented in [4] and employed in Method1 for an efficient parallel histogram
computation.

This approach is based on the fact that 32 threads (one warp) execute the
same instructions in parallel. Within a warp, an atomic update of a particular
histogram bin can be simulated by tagging data with the ID of the updating
thread. If more than one thread update this data, exactly one thread will suc-
ceed and data tagged with this thread ID will remain. Thus it is possible to
check which thread actually succeeded and redo the update for all not successful
threads [4,5]. This is why this algorithm is data dependent and performs worse
for images with constant intensity values, where all threads of a warp collide
while updating the same bin and hence need to be serialized.

Since global memory is slow, shared memory is used to hold temporary his-
tograms. In Methodl, an unsigned integer is used in shared memory to hold the
tag in the 5 (log232) most significant bits and the bin counter in the remaining 27
bits for each bin. The limitations for this approach arise because shared memory
is limited to 16 kB per block and in order to occupy the GPU, several warps
need to be run within one execution block. As a result, a partial joint histogram
has to be allocated in shared memory for every warp.

In order to apply this algorithm to joint histogram computation, a new image
is first created according to Eq. 4. This operation is expensive since it increases
the memory requirement by a full image size. If no additional memory is available
Eq. 4 has to be evaluated within each kernel call.

The computation of a reasonable joint histogram of size 80 x 80 with 4 warps
(128 threads) per block would exceed the available shared memory by far (with
a memory requirement of 100 kB = 4 warps x 6400 bins x 4 Bytes). For this rea-
son, joint histograms usually cannot be computed with one kernel call. In fact,
several kernel calls are necessary to compute step by step the complete joint
histogram by computing a certain range of bins within each call.

In the following we propose to extend this algorithm with three major opti-
mizations, which focus on execution time as well as on memory requirement.

2.3 Multiple Bin Encoding (MBE)

In order to use the shared memory more efficiently, we encode two bins in 26
of the 27 less significant bits of an unsigned integer. This concept is shown in

3 As described in [5], this functionality depends on the compute capability of the device.
Potential improvements based on atomic operations remain to be investigated.

Fig. 1. Of course this makes collisions more likely to happen, since even updates
to two different bins may conflict because they are encoded in the same integer.
Nevertheless MBE allows processing twice the number of bins per kernel call.
This results in fewer overall kernel calls and reduces global memory access. It is
especially important for complex interpolation schemes when no spare memory
is available. With this optimization the data of a bin is encoded with 13 bits.
Overflows are avoided by regularly updating the block histograms in the global
memory. This optimization is always applicable and has no influence on memory
requirements.

Unoptimized organization of one element in the shared memory

Optimized organization of one element in the shared memory

used for tag ID (5 bits)

used as frequency counter of bins (27 bits)

used as frequency counter of bins with odd index (13 bits)
used as frequency counter of bins with even index (13 bits)
not used (1 bit)

Fig. 1. Example of MBE using an unsigned integer to encode two bins instead of one.
Binl and Bin2 are encoded in the first word, Bin3 and Bin4 in the second word, etc.

2.4 Bin Caching (BC)

If spare global memory is available, this optimization should be used in addition
to MBE. Instead of performing a preprocessing step to create I, we use the first
kernel call to compute the resulting bin number for a certain voxel pair. This
is important since we avoid an unnecessary reread of the preprocessed image.
It is also more efficient to store the resulting bin number instead of a combined
intensity value. During the first kernel call the resulting bin number [B,,((B, —
I (z) + I.(¢(x)))] is stored to additional global memory. Joint histograms of
more than 256 x 256 bins are of limited interest. In this case a resulting bin
will never exceed 16 bits. We propose to pack two bin numbers into an unsigned
integer which saves 50% of the additional required memory compared to the
commonly used preprocessing. This results not just in an optimization in terms
of memory demand, but also in a reduced global memory access. Subsequent
kernels just read from the global memory the bin of the joint histogram that
needs to be incremented.

This is a very valuable optimization, especially in cases where several ker-
nel calls are necessary or expensive interpolation schemes are used. However,
this approach requires additional memory of 50% of an image size. This is an
improvement compared to the regular preprocessing step, but still too much

to claim general applicability for joint histogram computation. See Fig. 2 for a
schematic flowchart of this optimization.

Inter- Inter-
polation polation

. compute and
read histogram 1st .
no yes save histogram
bin for each kernel
bin for each
voxel call
voxel

process
histogram bin

!

Fig. 2. Schematic flowchart of the kernel optimized with BC

histogram
bin for each
voxel pair

{ init)
J—

2.5 Smart Texture Lookup (STL)

When there is not enough global memory temporarily available to apply BC' or
to use the regular preprocessing according to Eq. 4 the resulting bin number
B.((B. — 1)I.(z) + L.(¢(x)))] needs to be computed within each kernel call.
For this case we introduce an important optimization in addition to MBE. As
already mentioned, the computation of a joint histogram with B, x B,, bins is
equivalent to the computation of a histogram of size B; = B,B,,.

Whether a kernel call processes a certain voxel pair depends on the intensity
values of the voxels in I, and I,. Often the intensity value in I, is sufficient
to rule out a voxel pair in the kernel call. Therefore the texture lookup in I,
needs to be skipped to avoid unnecessary and expensive texture lookups and
interpolations in the global memory.

Within the k-th kernel call (each kernel computes B,.,..; bins) we only con-
sider combinations of intensity values for which the following equation holds:

(k — D)Brernes < B ((B, — D) I.(2) + I.(¢(z))) < kBrernel (5)
By reformulating Eq. 5 and the fact that 0.0 < I, (¢(z)) < 1.0 we get
(k= 1)Brernea — Bio < BL.(B, —). (z) < kBrerner - (6)

If Eq. 6 is not true for a I,(x), the texture lookup of I,(¢(z)) is skipped.

3 Experiments & Benchmarks

For the experiments we used two different systems that are shown in Tab. 1. In
3.1 we generated and used data with either constant (HOMO_DATA) or uni-
formly distributed random (RAND_DATA) intensity values of different resolu-
tions. We used different interpolation schemes (trilinear or tricubic) and applied

an affine transformation to the moving volume. We then compared the perfor-
mance of (I): MBE & BC to Method! using a preprocessing step for Eq. 4 and
(II): MBE & STL to Methodl without the use of additional memory.
Note that computation times depend on the number of warps as observed in [1].
Here, 6 warps were used for comparison (I) and 4 warps for comparison (II).

In 3.2 we employed standard optimization schemes to tackle the registration
tasks shown in Tab. 2.

Table 1. Test Systems

System A System B
CPU 2 Intel Xeon@3,2 GHz; 3 GB 2 Intel Xeon QuadCore@2,5 Ghz; 3 GB
GPU|NVIDIA GeForce 8800GTX; 768 MB NVIDIA Tesla C1060; 4096 MB

Table 2. Registration tasks (REG), reference (R) and moving (M) images

Task REG_BRAIN REG_LUNG128| REG_LUNG256
R-BRAIN ‘ M_BRAIN |R/M_LUNGI128| R/M_LUNG256
Resolution|[44 x 512 x 512(52 x 256 x 256|128 x 128 x 128| 256 x 256 x 256
Modality CT MRI (T1) CT CT
Remark || from the Vanderbilt database |lung in inspiration/expiration (R/M)

3.1 NMI Computation Times

We calculate NMI in three steps: joint histogram computation, normalization of
the histogram (3, ; J(i,j) = 1) and the actual computation of NMI by Eq. 2.
For the computation of the marginal entropies H(X) and H(Y) an adapted
implementation of NVIDIA’s high efficient reduction algorithm [11] is employed.
The normalization together with the computation of NMI takes 0.19/0.14 ms
(on System A/B resp.) for a joint histogram with 100 x 100 bins. Its cost is
negligible compared to the joint histogram calculation.

Figure 3 illustrates the improvements achieved with the proposed optimiza-
tions for different bin numbers on the REG_BRAIN dataset. Table 3 shows the
average reduction in computation time.

In comparison (I) on System B, we observed a significant reduction in runtime
of up to 35% for real images from the Vanderbilt database [12].

Experiments on REG_DATA revealed that for bin ranges above 140 x 140 the
optimized algorithm with tricubic interpolation is faster than the unoptimized
algorithm with trilinear interpolation (if additional memory is available). This
could allow for a more accurate registration by using higher order interpolation
schemes while keeping computation times reasonable.

With MBE, due to its higher computational complexity and more frequent
global memory updates (to avoid overflows), no further improvements were ob-
served by encoding more than two bins in the 27 less significant bits.

transformation: affine, interpolation: trilinear, dataset: REG_BRAIN transformation: affine, interpolation: trilinear, dataset: REG_BRAIN
250 u T v T 60 T T T T
unoptimized (no preprocessing) —<— unoptimized (preprocessing) ——
optimized (MBE, STL) = optimized (MBE, BC) =
2 200 | 1 Z S0r
@ Q
£ E 40 f
= 150 =
2 =3
] g 30r
2 100 f 2
3 § 20
o o
s L =
s 50 z 10+
0 0
0 50 100 150 200 250 0 50 100 150 200 250
number of histogram bins for each image number of histogram bins for each image

Fig. 3. NMI computation times on System B using different methods on dataset
REG_BRAIN without (left) and with (right) additional memory available.

Table 3. Comparison of NMI computation times with optimized/unoptimized algo-
rithms on RAND_DATA /HOMO_DATA and realistic REG_BRAIN datasets. Average
computation time reduction on System A/B. Joint histogram size: binsxbins, Trans-
formation: affine

MBE & BC, (I) MBE & STL, (II)
(trilinear) | (tricubic) | (trilinear) | (tricubic)

19.2/24.4%|15.4/28.5%|28.8/28.6%(40.9,/41.9%

side length of volumes: 256

bins: 10 to 250, RAND_DATA
side length of volumes: 16 to 256
bins: 100, RAND_DATA

side length of volumes: 16 to 256
bins: 100, HOMO_DATA
REG_BRAIN datasets

bins: 10 to 250

19.8/21.7%|14.1/24.1%|35.1/32.8%(44.7 /43.5%

10.9/13.6%10.7/19.6%|33.0/31.6%(53.0/52.1%

17.3/22.7%16.0/28.3%|31.4/30.9%(45.9,/46.6%

3.2 Applications to Rigid and Nonrigid Registration Tasks

Now we demonstrate the impact of the presented results on practical registration
tasks. In addition to similarity measures, we also implemented all the building
blocks of two registration algorithms (rigid and nonrigid) with CUDA. Their
performance was evaluated on System B.

For rigid registration tasks we employ NMI together with a simple Hill Climb-
ing algorithm to register multimodal head scans.

The nonrigid registration method is based on an algorithm proposed in [13].
The registration process is driven by forces derived from MI. A fast recursive
Gaussian filter is used as regularizer. This method is tested with two CT lung
datasets in different breathing phases.

The registration results are shown in Fig. 4. Computation times are listed in
Tab. 4. We achieved a very low registration time with MBE & BC compared to
the CPU implementation. Even if optimizing with STL instead of BC performs
notably slower for the rigid registration task, it is an important optimization
when no spare memory is available. This effect is not as noticeable for the non-
rigid registration task because of the significant cost of the filtering operations.

The CPU code is highly optimized and parallelized. The GPU code is opti-
mized by applying basic techniques presented in [14] and using either MBE &
BC or MBE & STL for the joint histogram computation (100 x 100 bins).

Fig. 4. REG_BRAIN unregistered: a and registered (rigid): b; REG_LUNG256 unreg-
istered: c, e and registered (nonrigid): d, f

Table 4. Rigid and nonrigid registration performance on System B

rigid nonrigid
REG_BRAIN REG,LUNG128‘REG,LUNG256
(trilinear)|(tricubic) (trilinear)
CPU 1.5s 15.9s 9.3s 127.4s
GPU (MBE & BC) 1.0s 1.6s 2.8s 23.1s
GPU (MBE & STL) 1.6s 3.2s 3.1s 25.0s

4 Conclusion

We presented three novel optimization strategies which allow for faster compu-
tation of joint histograms, even if higher order interpolation schemes are used
or memory is limited. While Bin Caching requires slightly more memory, opti-
mizations based on Multiple Bin Encoding and Smart Texture Lookup are always
possible. The combination of MBE and BC' allows for up to a 35% decrease in
computation time with a reduced memory overhead. Even if STL is significantly
slower than BC, this optimization can still be useful when no additional memory
is available. None of the proposed optimization techniques require preprocess-
ing steps. The performance gains observed in our experiments open the door to
new applications for advanced registration methods, such as solving alignment
problems in interventional imaging under real-time constraints.

References

1. R. Shams and R. A. Kennedy, Efficient Histogram Algorithms for NVIDIA CUDA
Compatible Devices, Proc. Int. Conf. on Signal Processing and Communications
Systems (ICSPCS), Gold Coast, Australia, Dec. 2007, pp. 418-422.

2. F. Maes, A. Collignon, D. Vandermeulen, P. Suetens and G. Marchal, Multimodal-
ity Image Registration by Maximization of Mutual Information, IEEE Trans. Med-
ical Imaging, 16(2), Apr. 1997, pp. 187198

3. C. Studholme, D. L. G. Hill and D. J. Hawkes, An overlap invariant entropy mea-
sure of 3D medical image alignment, Pattern Recognition, 32(1), 1999, pp. 71-86

4. V. Podlozhnyuk, Histogram calculation in CUDA, NVIDIA Tech. Rep., 2007

5. NVIDIA, CUDA Programming Guide, 2010

6. R. Shams, et al., Parallel computation of mutual information on the GPU with
application to real-time registration of 3D medical images, Comput. Methods Pro-
grams Biomed., 2009

7. T. Brosch and R. Tam, A Self-Optimizing Histogram Algorithm for Graphics Card
Accelerated Image Registration, Proc. MICCAI Grid Workshop, 2009, pp. 35-44

8. S. Chen, J. Qin, Y. Xie, W. Pang and P. Heng, CUDA-based Acceleration and Algo-
rithm Refinement for Volume Image Registration, Int. Conf. on Future BioMedical
Information Engineering (FBIE), 2009

9. R. Shams and N. Barnes, Speeding up Mutual Information Computation Using
NVIDIA CUDA Hardware, IEEE Computer Society, 2007, pp. 555-560

10. Y. Lin and G. Medioni, Mutual Information Computation and Maximization Using
GPU, IEEE Computer Society Conf. on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2008, pp. 1-6

11. M. Harris, Optimizing Parallel Reduction in CUDA, NVIDIA Tech. Rep., 2007

12. J. West, J. M. Fitzpatrick, M. Y. Wang, et al., Comparison and evaluation of retro-
spective intermodality image registration techniques, J. Comput. Assist. Tomogr.,
21(4), 1997, pp. 554-566

13. C. Chefd’hotel, H. Faugeras, G. Hermosillo and O. Faugeras, Flows Of Diffeomor-
phisms For Multimodal Image Registration, Proc. of IEEE Int. Symposium on
Biomedical Imaging, 2002, pp. 21-28

14. NVIDIA, NVIDIA CUDA C Programming, Best Practices Guide, 2010

